IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v81y2016i2d10.1007_s11069-015-2115-x.html
   My bibliography  Save this article

A comparison of forest fire burned area indices based on HJ satellite data

Author

Listed:
  • Wenliang Liu

    (Chinese Academy of Sciences)

  • Litao Wang

    (Chinese Academy of Sciences)

  • Yi Zhou

    (Chinese Academy of Sciences)

  • Shixin Wang

    (Chinese Academy of Sciences)

  • Jinfeng Zhu

    (Chinese Academy of Sciences)

  • Futao Wang

    (Chinese Academy of Sciences)

Abstract

The accurate extraction of burned area is important for biomass burning monitoring and loss evaluation. Environment and Disasters Monitoring Microsatellite Constellation put forward by China has two satellites of HJ-1A and HJ-1B in orbit. Each satellite has two CCD cameras with four bands to meet the need of mapping burned area. In order to evaluate the capability for mapping the burned area using HJ satellite’s CCD data, a forest fire occurring in Yuxi, Yunnan Province of Southwest China, was selected to analyze the spectral characteristic in the range of visible and near infrared in this paper. The research of mapping burned area was carried out based on the HJ satellites using three spectral indices (NDVI, GEMI and BAI). The color composite images including NIR band could reflect the spectral change in post-fire vegetation with a higher repetition cycle (2 days, or 1 day in some region) and higher spatial resolution (30 m). Through the comparison with the discrimination index M and extraction accuracy, the BAI has higher discrimination capability than NDVI and GEMI, and the highest M value is 2.1943. The extraction of burned area based on BAI showed higher accuracy, and the highest kappa value is 0.8957. Using HJ satellites, the map of burned area with higher temporal–spatial resolution and higher accuracy could provide the potential for dynamic monitoring and analyzing fire behavior.

Suggested Citation

  • Wenliang Liu & Litao Wang & Yi Zhou & Shixin Wang & Jinfeng Zhu & Futao Wang, 2016. "A comparison of forest fire burned area indices based on HJ satellite data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 971-980, March.
  • Handle: RePEc:spr:nathaz:v:81:y:2016:i:2:d:10.1007_s11069-015-2115-x
    DOI: 10.1007/s11069-015-2115-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-015-2115-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-015-2115-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Litao Wang & Yi Zhou & Weiqi Zhou & Shixing Wang, 2013. "Fire danger assessment with remote sensing: a case study in Northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 819-834, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hatice Oncel Cekim & Coşkun Okan Güney & Özdemir Şentürk & Gamze Özel & Kürşad Özkan, 2021. "A novel approach for predicting burned forest area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2187-2201, January.
    2. Yu Liu & Bo Li & Chuanping Wu & Baohui Chen & Tejun Zhou, 2021. "Risk warning technology for the whole process of overhead transmission line trip caused by wildfire," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 195-212, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Chowdhury & Quazi Hassan, 2013. "Use of remote sensing-derived variables in developing a forest fire danger forecasting system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 321-334, June.
    2. Jinghu Pan & Weiguo Wang & Junfeng Li, 2016. "Building probabilistic models of fire occurrence and fire risk zoning using logistic regression in Shanxi Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1879-1899, April.
    3. Xiaowei Li & Gang Zhao & Xiubo Yu & Qiang Yu, 2014. "A comparison of forest fire indices for predicting fire risk in contrasting climates in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1339-1356, January.
    4. Wenliang Liu & Litao Wang & Yi Zhou & Shixin Wang & Jinfeng Zhu & Futao Wang, 2016. "A comparison of forest fire burned area indices based on HJ satellite data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 971-980, March.
    5. Wenliang Liu & Shixin Wang & Yi Zhou & Litao Wang & Jinfeng Zhu & Futao Wang, 2016. "Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn Mountains of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 347-363, March.
    6. Wenliang Liu & Shixin Wang & Yi Zhou & Litao Wang & Jinfeng Zhu & Futao Wang, 2016. "Lightning-caused forest fire risk rating assessment based on case-based reasoning: a case study in DaXingAn Mountains of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 347-363, March.
    7. Xu Jia & Yong Gao & Baocheng Wei & Shan Wang & Guodong Tang & Zhonghua Zhao, 2019. "Risk Assessment and Regionalization of Fire Disaster Based on Analytic Hierarchy Process and MODIS Data: A Case Study of Inner Mongolia, China," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    8. Wenliang Liu & Shixin Wang & Yi Zhou & Litao Wang, 2014. "An android intelligent mobile terminal application: field data survey system for forest fires," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1483-1497, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:81:y:2016:i:2:d:10.1007_s11069-015-2115-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.