Author
Listed:
- Alireza Neam
- Touraj Taghikhany
Abstract
This paper presents a new ground motion prediction equation for the estimation of generalized interstory drift spectrum (GIDS). This parameter estimates, through an approximate method, the maximum interstory drift ratio in multistory buildings responding elastically to a given ground motion record. The models presented by this study is developed empirically by regression of the database that was selected from the NGA-West 1 for fault rupture distances of >60 km. The dataset comprised 851 corrected and processed strong-motion records of earthquakes between M w 5.2 and 7.9. The model is bass on a function of earthquake magnitude, distance from source to site, local average shear wave velocity, nonlinear soil response, sediment depth, rupture dip, faulting mechanism, and hanging-wall effect. This equation was derived from a stable algorithm for regression analysis called mixed-effects model. The algorithm was used to develop ground motion prediction equation for the estimation of GIDS in three different lateral resisting systems with oscillator periods ranging from 0.05 to 5.0 s. These structural systems with bending lateral deformation (shear walls), shear lateral deformation (moment-resisting frames), and hybrid lateral deformation (combination of moment-resisting frames and shear walls) are selected to maintain a general prospect with respect to the effect of the seismic source and site parameters on GIDS. The results showed that increasing shear wave velocity causes a decrease in the influence of the type of lateral resisting system on the maximum interstory drift ratio. Moreover, a comparison of different systems indicates that maximum interstory drift ratio of moment-resisting frames is less dependent on the distance from causative fault than shear wall structure. Copyright Springer Science+Business Media Dordrecht 2016
Suggested Citation
Alireza Neam & Touraj Taghikhany, 2016.
"Prediction equations for generalized interstory drift spectrum considering near-fault ground motions,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1443-1473, February.
Handle:
RePEc:spr:nathaz:v:80:y:2016:i:3:p:1443-1473
DOI: 10.1007/s11069-015-2029-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:3:p:1443-1473. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.