IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v79y2015i3p1753-1772.html
   My bibliography  Save this article

Monitoring the recent trend of aeolian desertification using Landsat TM and Landsat 8 imagery on the north-east Qinghai–Tibet Plateau in the Qinghai Lake basin

Author

Listed:
  • Haibo Wang
  • Mingguo Ma
  • Liying Geng

Abstract

As an important part of Qinghai Plateau, the Qinghai Lake is a sensitive and fragile zone for global change impacts. It is one of the most strongly desertified regions on the Qinghai Plateau. Based on remote sensing, a geographic information system and using Thematic Mapper imagery for the years 1987, 2000, 2009 and Landsat 8 images for the year 2014 as data sources, we extracted information regarding the dynamic changes of aeolian desertification in the study area over the last 28 years. The spatio-temporal evolutions of the landscape patterns of regional aeolian desertified land (ADL) are discussed. Our objective is to provide references for desertification control and eco-environmental restoration in the Qinghai Lake basin (QLB). Results elicit an aeolian desertified area which has increased by 96.74 km 2 over the past 28 years. ADL mainly experienced processes of increasing stable to decreasing trends, before 2000, the area of aeolian desertification increased by 338.03 km 2 . After 2000, desertification remains stable, but as we speak desertification decreases and a moderate and slight ADL took the lead. The dynamics of aeolian desertification in QLB is mainly determined by climate change, human activities and management. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Haibo Wang & Mingguo Ma & Liying Geng, 2015. "Monitoring the recent trend of aeolian desertification using Landsat TM and Landsat 8 imagery on the north-east Qinghai–Tibet Plateau in the Qinghai Lake basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1753-1772, December.
  • Handle: RePEc:spr:nathaz:v:79:y:2015:i:3:p:1753-1772
    DOI: 10.1007/s11069-015-1924-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1924-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1924-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salih Muhammad Awadh & Ahmed H. Al-Sulttani & Zaher Mundher Yaseen, 2022. "Temporal dynamic drought interpretation of Sawa Lake: case study located at the Southern Iraqi region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 619-638, May.
    2. Haibo Wang & Mingguo Ma, 2016. "Impacts of Climate Change and Anthropogenic Activities on the Ecological Restoration of Wetlands in the Arid Regions of China," Energies, MDPI, vol. 9(3), pages 1-25, March.
    3. Shengbo Xie & Jianjun Qu & Xiangtian Xu & Yingjun Pang, 2017. "Interactions between freeze–thaw actions, wind erosion desertification, and permafrost in the Qinghai–Tibet Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 829-850, January.
    4. Juanle Wang & Haishuo Wei & Kai Cheng & Ge Li & Altansukh Ochir & Lingling Bian & Davaadorj Davaasuren & Sonomdagva Chonokhuu & Elbegjargal Nasanbat, 2019. "Spatio-Temporal Pattern of Land Degradation along the China-Mongolia Railway (Mongolia)," Sustainability, MDPI, vol. 11(9), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:79:y:2015:i:3:p:1753-1772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.