IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v79y2015i2p1399-1408.html
   My bibliography  Save this article

Analysis of the mechanism of seabed liquefaction induced by waves and related seabed protection

Author

Listed:
  • Yu Huang
  • Yangjuan Bao
  • Min Zhang
  • Chun Liu
  • Ping Lu

Abstract

As one of the most serious offshore hazards, wave-induced seabed liquefaction can trigger massive landslides on the ocean floor and pose a great threat to submarine structures (e.g., coastal levees, oil platforms, drilling platforms and seabed pipelines). In view of the complexity and practicability of the problem, this study systematically analyzes the mechanism, factors and remedial measures of liquefaction. Compared with seismic liquefaction, waved-induced liquefaction varies in many respects, such as the load pattern, loading position, drainage condition and characteristics of pore water pressure, resulting in different mechanisms of seabed liquefaction under the action of waves. Both wave characteristics and soil characteristics, including the wave period, water depth, wave height, degree of saturation, seabed thickness, permeability and stress history, affect the degree of seabed liquefaction. Moreover, to ensure the sustainable development of the ocean, a series of remedial measures against liquefaction, including evaluation of the liquefaction potential, management of disaster prevention, ocean monitoring and forecasting, are proposed. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Yu Huang & Yangjuan Bao & Min Zhang & Chun Liu & Ping Lu, 2015. "Analysis of the mechanism of seabed liquefaction induced by waves and related seabed protection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1399-1408, November.
  • Handle: RePEc:spr:nathaz:v:79:y:2015:i:2:p:1399-1408
    DOI: 10.1007/s11069-015-1897-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1897-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1897-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohua Bao & Bin Ye & Guanlin Ye & Feng Zhang, 2016. "Co-seismic and post-seismic behavior of a wall type breakwater on a natural ground composed of liquefiable layer," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1799-1819, September.
    2. Min Zhang & Weilong Zhang & Yu Huang & Yuelou Cai & Shiwei Shen, 2019. "Failure mechanism of submarine slopes based on the wave flume test," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1249-1262, April.
    3. Shunkai Liu & Yuxing Nie & Wei Hu & Mohammed Ashiru & Zhong Li & Jun Zuo, 2022. "The Influence of Mixing Degree between Coarse and Fine Particles on the Strength of Offshore and Coast Foundations," Sustainability, MDPI, vol. 14(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:79:y:2015:i:2:p:1399-1408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.