IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v77y2015i1p75-96.html
   My bibliography  Save this article

Effects of errors and biases on the scaling of earthquake spatial pattern: application to the 2004 Sumatra–Andaman sequence

Author

Listed:
  • Simanchal Padhy
  • O. Mishra
  • N. Subhadra
  • V. Dimri
  • O. Singh
  • G. Chakrabortty

Abstract

This study discusses the scaling properties of the spatial distribution of the December 26, 2004, Sumatra aftershocks. We estimate the spatial correlation dimension D 2 of the epicentral distribution of aftershocks recorded by a local network operated by Geological Survey of India. We estimate the value of D 2 for five blocks in the source area by using generalized correlation integral approach. We assess its bias due to finite data points, scaling range, effects of location errors, and boundary effects theoretically and apply it to real data sets. The correlation dimension was computed both for real as well as synthetic data sets that include randomly generated point sets obtained using uniform distributions and mimicking the number of events and outlines of the effective areas filled with epicenters. On comparing the results from the real data and random point sets from simulations, we found the lower limit of bias in D 2 estimates from limited data sets to be 0.26. Thus, the spatial variation in correlation dimensions among different blocks using local data sets cannot be directly compared unless the influence of bias in the real aftershock data set is taken into account. They cannot also be used to infer the geometry of the faults. We also discuss the results in order to add constraints on the use of synthetic data and of different approaches for uncertainty analysis on spatial variation of D 2 . A difference in D 2 values, rather than their absolute values, among small blocks is of interest to local data sets, which are correlated with their seismic b values. Taking into account the possible errors and biases, the average D 2 values vary from 1.05 to 1.57 in the Andaman–Nicobar region. The relative change in D 2 values can be interpreted in terms of clustering and diffuse seismic activity associated with the low and high D 2 values, respectively. Overall, a relatively high D 2 and low b value is consistent with high-magnitude, diffuse activity in space in the source region of the 2004 Sumatra earthquake. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Simanchal Padhy & O. Mishra & N. Subhadra & V. Dimri & O. Singh & G. Chakrabortty, 2015. "Effects of errors and biases on the scaling of earthquake spatial pattern: application to the 2004 Sumatra–Andaman sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 75-96, May.
  • Handle: RePEc:spr:nathaz:v:77:y:2015:i:1:p:75-96
    DOI: 10.1007/s11069-013-0978-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0978-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0978-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Roy & S. Mondal & Mallickarjun Joshi, 2012. "Seismic hazards assessment of Kumaun Himalaya and adjacent region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 283-297, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    2. Naresh Kumar & Dilip Yadav & S. Mondal & P. Roy, 2013. "Stress drop and its relation to tectonic and structural elements for the meizoseismal region of great 1905 Kangra earthquake of the NW Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2021-2038, December.
    3. P. Roy & Suparna Chowdhury & Partha Sarkar & Saroj Mondal, 2015. "Fractal study of seismicity in order to characterize the various tectonic blocks of North-east Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 5-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:77:y:2015:i:1:p:75-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.