IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v76y2015i3p1939-1945.html
   My bibliography  Save this article

Which is more hazardous: avalanche, landslide, or mudslide?

Author

Listed:
  • X.-Z. Xu
  • Z.-Y. Liu
  • W.-L. Wang
  • H.-W. Zhang
  • Q. Yan
  • C. Zhao
  • W.-Z. Guo

Abstract

Gravity erosion is a dominant geomorphic process on the steep loess slopes. Here, we conducted rainfall simulation experiments to monitor occurrence and behavior of the mass failure on steep loess slopes. The results show that the quantity of soil loss caused by avalanche and landslide was much more than that caused by mudslide, and the avalanche was the most violent gravity erosion. As the slopes were eroded with five runs of rainfalls each at an amount of 48 mm, the total volume of avalanche, landslide, and mudslide were 150.9, 82.5, and 3.9 × 10 3 cm 3 /m, and their maximum individual amounts were 369.9, 177.6, and 24.6 × 10 3 cm 3 , respectively. The amount of avalanche, landslide, and mudslide accounted for 62, 36, and 2 % of the total gravity erosion in a rainfall experiment of the model test. Furthermore, the slope height and gradient had a remarkable impact on the erosion amount. When the slope height was increased from 1.0 to 1.5 m, the total amount of avalanche was increased by 22 %, and the maximum volume of individual avalanche was augmented by 165 %. When the slope gradient was increased from 70° to 80°, the total amount of landslide was enlarged by 52 %, and the maximum amount of individual avalanche was magnified by 65 %. As a result, avalanche and landslide, especially the former, played a crucial role of soil erosion on steep slope compacted by hand with loess. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • X.-Z. Xu & Z.-Y. Liu & W.-L. Wang & H.-W. Zhang & Q. Yan & C. Zhao & W.-Z. Guo, 2015. "Which is more hazardous: avalanche, landslide, or mudslide?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1939-1945, April.
  • Handle: RePEc:spr:nathaz:v:76:y:2015:i:3:p:1939-1945
    DOI: 10.1007/s11069-014-1570-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1570-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1570-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang-Zhou Xu & Hong-Wu Zhang & Wen-Long Wang & Chao Zhao & Qiao Yan, 2015. "Quantitative monitoring of gravity erosion using a novel 3D surface measuring technique: validation and case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1927-1939, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chloe S. Fleming & Seann D. Regan & Amy Freitag & Heidi Burkart, 2023. "Indicators and participatory processes: a framework for assessing integrated climate vulnerability and risk as applied in Los Angeles County, California," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2069-2095, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:76:y:2015:i:3:p:1939-1945. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.