IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v76y2015i1p63-81.html
   My bibliography  Save this article

An investigation on the predictability of thunderstorms over Kolkata, India using fuzzy inference system and graph connectivity

Author

Listed:
  • Sutapa Chaudhuri
  • Debanjana Das
  • Anirban Middey

Abstract

The purpose of this study was to develop a computing system (CS) with fuzzy membership and graph connectivity approach to estimate the predictability of thunderstorms during the pre-monsoon season (April–May) over Kolkata (22°32′N, 88°20′E), India. The stability indices are taken to form the inputs of the CS. Ten important stability indices are selected to prepare the input of the fuzzy set. The data analysis during the period from 1997 to 2006 led to identify the ranges of the stability indices through membership function for preparing the fuzzy inputs. The possibility of thunderstorms with the given ranges of the stability indices is validated with the bipartite graph connectivity method. The bipartite graphs are prepared with two sets of vertices, one set for three membership functions (strong, moderate and weak) with the stability indices and the other set includes the three membership functions for the probability of thunderstorms (high, medium and low). The percentages of degree of vertex (ΔG) are computed from a sample set of bipartite graph on thunderstorm days and are assigned as the measure of the likelihood of thunderstorms. The results obtained from graph connectivity analysis are found to be in conformity with the output of fuzzy interface system (FIS). The result reveals that the skill of graph connectivity is better and supports the FIS in estimating the predictability of thunderstorms over Kolkata during the pre-monsoon season. The result further reveals from the minimum degree of vertex connectivity that among the ten selected stability indices, only four indices: lifted index, bulk Richardson number, Boyden index and convective available potential energy, are most relevant for estimating the predictability of thunderstorms over Kolkata, India. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Sutapa Chaudhuri & Debanjana Das & Anirban Middey, 2015. "An investigation on the predictability of thunderstorms over Kolkata, India using fuzzy inference system and graph connectivity," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 63-81, March.
  • Handle: RePEc:spr:nathaz:v:76:y:2015:i:1:p:63-81
    DOI: 10.1007/s11069-014-1477-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1477-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1477-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sutapa Chaudhuri, 2007. "Chaotic Graph Theory Approach For Identification Of Convective Available Potential Energy (Cape) Patterns Required For The Genesis Of Severe Thunderstorms," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 413-422.
    2. Sutapa Chaudhuri & Jayanti Pal & Anirban Middey & Sayantika Goswami, 2013. "Nowcasting Bordoichila with a composite stability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 591-607, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sutapa Chaudhuri & Arumita Roy Chowdhury & Payel Das, 2018. "Implementation of Sugeno: ANFIS for forecasting the seismic moment of large earthquakes over Indo-Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 391-405, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:76:y:2015:i:1:p:63-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.