IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i1p233-250.html
   My bibliography  Save this article

Abiki oscillations in Sakitsu Bay, west Kyushu, Japan

Author

Listed:
  • Kenji Tanaka
  • Shinichiro Gohara
  • Takayuki Koga
  • Ryuta Yamaguchi
  • Fumihiko Yamada

Abstract

Sakitsu and Yokaku bays in Amakusa in west Kyushu, Japan, experienced inundation damage in the February 2009 meteotsunami (Abiki) event. The oscillation characteristics of both bays are investigated by taking field measurements and conducting numerical experiments with regard to flood mitigation with the aim to reduce the flood impact during Abiki events. A continuous wavelet transform and bandpass filtering both of the pressure and water level indicated that a sequence of pressure disturbances, as small as 1.0 hPa, caused the large amplified oscillation within Sakitsu Bay. When a sequence of ocean long waves entered the bay, a surf beat evolved in the early stages. Subsequently, the sea level began to undergo large amplitude oscillations, and there was a secondary peak of oscillation with a period of around 24 min, as seen in both field measurements and numerical experiments. A surf beat with the period of 12 min formed in Yokaku Bay owing to the continuous incidence of ocean waves with period of 12 min, but its wave period was almost half of that of the natural period of the bay. This surf beat may have entered Sakitsu Bay with natural period of 11.8 min and caused large water-level fluctuations. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Kenji Tanaka & Shinichiro Gohara & Takayuki Koga & Ryuta Yamaguchi & Fumihiko Yamada, 2014. "Abiki oscillations in Sakitsu Bay, west Kyushu, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 233-250, October.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:1:p:233-250
    DOI: 10.1007/s11069-013-0959-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0959-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0959-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toshiyuki Asano & Toru Yamashiro & Norihiro Nishimura, 2012. "Field observations of meteotsunami locally called “abiki” in Urauchi Bay, Kami-Koshiki Island, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1685-1706, November.
    2. Kenji Tanaka, 2012. "On meteotsunamis around Tsushima Strait generated by the Baiu front," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 805-822, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belinda Lipa & Hardik Parikh & Don Barrick & Hugh Roarty & Scott Glenn, 2014. "High-frequency radar observations of the June 2013 US East Coast meteotsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 109-122, October.
    2. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    3. P. Whitmore & B. Knight, 2014. "Meteotsunami forecasting: sensitivities demonstrated by the 2008 Boothbay, Maine, event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 11-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:1:p:233-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.