IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v73y2014i3p1393-1404.html
   My bibliography  Save this article

Adaptive neuro-fuzzy selection of the optimal parameters of protective spur dike

Author

Listed:
  • Hossein Basser
  • Shahaboddin Shamshirband
  • Hojat Karami
  • Dalibor Petković
  • Shatirah Akib
  • Afshin Jahangirzadeh

Abstract

This study proposes a new approach for determining optimum dimensions of protective spur dike to mitigate scour amount around existing spur dikes. The main objective of this article was to predict the most optimum values of the protective spur dikes to reach the best performance. To predict the protective spur dike parameters for scour controlling around spur dikes, this paper constructed a process which selects the optimal protective spur dike parameters in regard to actual length of the protective spur dike, actual length of the main spur dikes, distance between the protective spur dike and the first spur dike, angle between protective spur dike and flow direction, flow intensity and median size of bed sediments with adaptive neuro-fuzzy (ANFIS) method. To build a protective spur dike with the best features, it is desirable to select and analyze factors that are truly relevant or the most influential to the spur dike. This procedure is typically called variable selection, and it corresponds to finding a subset of the full set of recorded variables that exhibits good predictive abilities. In this study, architecture for modeling complex systems in function approximation and regression was used, based on using ANFIS. Variable searching using the ANFIS network was performed to determine how the five factors affect the protective spur dike. Experimental model of the protective spur dike was used to generate training and checking data for the ANFIS network. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Hossein Basser & Shahaboddin Shamshirband & Hojat Karami & Dalibor Petković & Shatirah Akib & Afshin Jahangirzadeh, 2014. "Adaptive neuro-fuzzy selection of the optimal parameters of protective spur dike," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1393-1404, September.
  • Handle: RePEc:spr:nathaz:v:73:y:2014:i:3:p:1393-1404
    DOI: 10.1007/s11069-014-1140-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1140-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1140-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tuan Thieu Quang & Hocine Oumeraci, 2012. "Numerical modelling of wave overtopping-induced erosion of grassed inner sea-dike slopes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 417-447, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shamshirband, Shahaboddin & Petković, Dalibor & Anuar, Nor Badrul & Gani, Abdullah, 2014. "Adaptive neuro-fuzzy generalization of wind turbine wake added turbulence models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 270-276.
    2. Omid Ghorbanzadeh & Hashem Rostamzadeh & Thomas Blaschke & Khalil Gholaminia & Jagannath Aryal, 2018. "A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 497-517, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai Trung Le & H. J. Verhagen & J. K. Vrijling, 2017. "Damage to grass dikes due to wave overtopping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 849-875, March.
    2. Hossein Basser & Shahaboddin Shamshirband & Dalibor Petković & Hojat Karami & Shatirah Akib & Afshin Jahangirzadeh, 2014. "Adaptive neuro-fuzzy prediction of the optimum parameters of protective spur dike," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1439-1449, September.
    3. A. Bomers & J. P. Aguilar Lopez & J. J. Warmink & S. J. M. H. Hulscher, 2018. "Modelling effects of an asphalt road at a dike crest on dike cover erosion onset during wave overtopping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 1-30, August.
    4. Hossein Basser & Shahaboddin Shamshirband & Hojat Karami & Dalibor Petković & Shatirah Akib & Afshin Jahangirzadeh, 2014. "RETRACTED ARTICLE: Adaptive neuro-fuzzy selection of the optimal parameters of protective spur dike," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1393-1404, September.
    5. Bingqi Li & Zhenyu Zhang & Xiaogang Wang & Xiaonan Liu, 2019. "Investigation on the Debonding Failure Model of Anchored Polyurea Coating under a High-Velocity Water Flow and Its Application," Sustainability, MDPI, vol. 11(5), pages 1-22, February.
    6. Hossein Basser & Shahaboddin Shamshirband & Dalibor Petković & Hojat Karami & Shatirah Akib & Afshin Jahangirzadeh, 2014. "RETRACTED ARTICLE: Adaptive neuro-fuzzy prediction of the optimum parameters of protective spur dike," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1439-1449, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:73:y:2014:i:3:p:1393-1404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.