IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v73y2014i2p427-437.html
   My bibliography  Save this article

An objective prediction model for typhoon rainstorm using particle swarm optimization: neural network ensemble

Author

Listed:
  • Hua-sheng Zhao
  • Long Jin
  • Ying Huang
  • Jian Jin

Abstract

A nonlinear ensemble prediction model for typhoon rainstorm has been developed based on particle swarm optimization-neural network (PSO-NN). In this model, PSO algorithm is employed for optimizing the network structure and initial weight of the NN with creating multiple ensemble members. The model input of the ensemble member is the high correlated grid point factors selected from the rainfall forecast field of Japan Meteorological Agency numerical prediction products using the stepwise regression method, and the model output is the future 24 h rainfall forecast of the 89 stations. Results show that the objective prediction model is more accurate than the numerical prediction model which is directly interpolated into the stations, so it can better been implemented for the interpretation and application of numerical prediction products, indicating a potentially better operational weather prediction. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Hua-sheng Zhao & Long Jin & Ying Huang & Jian Jin, 2014. "An objective prediction model for typhoon rainstorm using particle swarm optimization: neural network ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 427-437, September.
  • Handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:427-437
    DOI: 10.1007/s11069-014-1089-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1089-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1089-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Huang & Long Jin & Hua-sheng Zhao & Xiao-yan Huang, 2018. "Fuzzy neural network and LLE Algorithm for forecasting precipitation in tropical cyclones: comparisons with interpolation method by ECMWF and stepwise regression method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 201-220, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:427-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.