IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v73y2014i2p1043-1062.html
   My bibliography  Save this article

Implications of vortex initialization and model spin-up in tropical cyclone prediction using Advanced Research Weather Research and Forecasting Model

Author

Listed:
  • Desamsetti Srinivas
  • Dodla Bhaskar Rao

Abstract

The roles of vortex initialization and model spin-up in tropical cyclone (TC) prediction using Advanced Research Weather Research and Forecasting (ARW) Model are studied through a case study of NARGIS (2008) cyclone over Bay of Bengal. ARW model is designed to have three two-way interactive nested domains, and a suite of 36 numerical experiments are performed with three values of maximum wind (MW), four of radius of maximum wind (RMW), and three of α and one experiment without vortex initialization. The results indicate that vortex initialization is important toward realistic representation of initial structure and location of cyclone vortex. Model spin-up during the first 18–24 h of model integration lead to faster intensification than of the real atmosphere, thus a weaker initial vortex evolved more realistically. Three experiments from vortex initialization produced MW and RMW nearer to the observations, but none of these produced a good prediction due to unrealistic intensification during model spin-up. A weaker vortex with intensity less than 50 % than observations produced the best forecast in terms of intensity, track, and landfall. The results suggest that slightly larger (~30 %) RMW than observations with α as −0.5 (for 81 km model resolution) that produces weaker vortex is to be implemented in the design of bogus vortex. This study assesses the merits of TC bogus scheme in ARW model, illustrates the need for vortex initialization, and analyzes the spin-up problem in cold-start model simulations of TC prediction. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Desamsetti Srinivas & Dodla Bhaskar Rao, 2014. "Implications of vortex initialization and model spin-up in tropical cyclone prediction using Advanced Research Weather Research and Forecasting Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 1043-1062, September.
  • Handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:1043-1062
    DOI: 10.1007/s11069-014-1125-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1125-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1125-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geeta Agnihotri & Y. Rama Rao & S. Dash, 2008. "Impact of various synthetic vortices on cyclone track prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 437-463, December.
    2. D. Bhaskar Rao & Vijay Tallapragada, 2012. "Tropical cyclone prediction over Bay of Bengal: a comparison of the performance of NCEP operational HWRF, NCAR ARW, and MM5 models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1393-1411, September.
    3. S. Sandeep & A. Chandrasekar & S. Dash, 2007. "Impact of modification of initial cyclonic structure on the prediction of a cyclone over the Arabian Sea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 487-499, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danqin Ren & Jiantin Du & Feng Hua & Yongzeng Yang & Lei Han, 2016. "Analysis of different atmospheric physical parameterizations in COAWST modeling system for the Tropical Storm Nock-ten application," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 903-920, June.
    2. Thit Oo Kyaw & Miguel Esteban & Martin Mäll & Tomoya Shibayama, 2021. "Extreme waves induced by cyclone Nargis at Myanmar coast: numerical modeling versus satellite observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1797-1818, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepak Subramani & R. Chandrasekar & K. Ramanujam & C. Balaji, 2014. "A new ensemble-based data assimilation algorithm to improve track prediction of tropical cyclones," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 659-682, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:1043-1062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.