IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v71y2014i2p1017-1024.html
   My bibliography  Save this article

Investigation of karst hydrological processes by using grey auto-incidence analysis

Author

Listed:
  • Yonghong Hao
  • Xiang Chen
  • Xuemeng Wang

Abstract

The karst hydrological processes are the response of karst groundwater system to precipitation. The precipitation penetrates through the vadose zone, the subsequent groundwater pressure wave propagates to a spring outlet, and then, the spring discharge changes. This paper proposes a grey auto-incidence analysis for studying the karst hydrological processes. The method can detect the periodicity of a time series, for example, precipitation and spring discharge. Then the approach is applied to Liulin Springs Basin, China. The results show that the auto-incidence degree of precipitation reaches to the maximum (i.e., 0.816) when time delay equals to 8 years. The auto-incidence degree of spring discharge reaches to the maximum (i.e., 0.865) when time delay equals to 3 years. These results show that the periodicity of precipitation is 8 years, and of spring discharge is 3 years. The difference of periodicity between the precipitation and the spring discharge reveals that the processes of precipitation recharging groundwater and groundwater transport are regulated or controlled by karst aquifer. Because of heterogeneity of karst aquifer, the quick flow and base flow occur during the groundwater propagation, which causes the periodicity of spring discharge is not coincidence with of precipitation. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Yonghong Hao & Xiang Chen & Xuemeng Wang, 2014. "Investigation of karst hydrological processes by using grey auto-incidence analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1017-1024, March.
  • Handle: RePEc:spr:nathaz:v:71:y:2014:i:2:p:1017-1024
    DOI: 10.1007/s11069-013-0695-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0695-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0695-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yonghong Hao & Bibo Cao & Xiang Chen & Jian Yin & Ronglin Sun & Tian-Chyi Yeh, 2013. "A Piecewise Grey System Model for Study the Effects of Anthropogenic Activities on Karst Hydrological Processes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1207-1220, March.
    2. Jie Zhou & Yiqun Tang & Ping Yang & Xiaohui Zhang & Nianqing Zhou & Jianxiu Wang, 2012. "Inference of creep mechanism in underground soil loss of karst conduits I. Conceptual model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 1191-1215, July.
    3. Xing-Wei Ren & Yi-Qun Tang & Jun Li & Qi Yang, 2012. "A prediction method using grey model for cumulative plastic deformation under cyclic loads," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 441-457, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiming Duan & Xinping Xiao & Lingling Pei, 2017. "Forecasting the Short-Term Traffic Flow in the Intelligent Transportation System Based on an Inertia Nonhomogenous Discrete Gray Model," Complexity, Hindawi, vol. 2017, pages 1-16, July.
    2. Zhilu Chang & Huanxiang Gao & Faming Huang & Jiawu Chen & Jinsong Huang & Zizheng Guo, 2020. "Study on the creep behaviours and the improved Burgers model of a loess landslide considering matric suction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1479-1497, August.
    3. Salih Muhammad Awadh & Ahmed H. Al-Sulttani & Zaher Mundher Yaseen, 2022. "Temporal dynamic drought interpretation of Sawa Lake: case study located at the Southern Iraqi region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 619-638, May.
    4. Y. Liu & B. Wang & H. Zhan & Y. Fan & Y. Zha & Y. Hao, 2017. "Simulation of Nonstationary Spring Discharge Using Time Series Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4875-4890, December.
    5. Huiming Duan & Xinping Xiao, 2019. "A Multimode Dynamic Short-Term Traffic Flow Grey Prediction Model of High-Dimension Tensors," Complexity, Hindawi, vol. 2019, pages 1-18, June.
    6. Zibo Du & Zheng Zhang & Lei Wang & Jingwei Zhang & Yonghui Li, 2023. "Effect of Moisture Content on the Permanent Strain of Yellow River Alluvial Silt under Long-Term Cyclic Loading," Sustainability, MDPI, vol. 15(17), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:71:y:2014:i:2:p:1017-1024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.