IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v70y2014i1p39-50.html
   My bibliography  Save this article

Modeling catchment sediment yield: a genetic programming approach

Author

Listed:
  • Vaibhav Garg

Abstract

Hydrologic processes are complex, non-linear, and distributed within a watershed both spatially and temporally. One such complex pervasive process is soil erosion. This problem is usually approached directly by considering the sediment yield. Most of the hydrologic models developed and used earlier in sediment yield modeling were lumped and had no provision for including spatial and temporal variability of the terrain and climate attributes. This study investigates the suitability of a recent evolutionary technique, genetic programming (GP), in estimating sediment yield considering various meteorological and geographic features of a basin. The Arno River basin in Italy, which is prone to frequent floods, has been chosen as case study to demonstrate the GP approach. The results of the present study show that GP can efficiently capture the trend of sediment yield, even with a small set of data. The major advantage of the GP analysis is that it generates simple parsimonious expression offering some possible interpretations to the underlying process. Copyright Springer Science+Business Media B.V. 2014

Suggested Citation

  • Vaibhav Garg, 2014. "Modeling catchment sediment yield: a genetic programming approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 39-50, January.
  • Handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:39-50
    DOI: 10.1007/s11069-011-0014-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-0014-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-0014-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangita Dey & Arabin Kumar Dey & Rajesh Kumar Mall, 2021. "Modeling Long-term Groundwater Levels By Exploring Deep Bidirectional Long Short-Term Memory using Hydro-climatic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3395-3410, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:39-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.