IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i2p1199-1209.html
   My bibliography  Save this article

A synthetic method for earthquake prediction by multidisciplinary data

Author

Listed:
  • Yongxian Zhang
  • Fuwang Gao
  • Jianjun Ping
  • Xiaotao Zhang

Abstract

China Metropolitan area around Beijing is one of the earthquake test sites in Continental China. Through more than 20 years of hard work, abundant seismic, geological, geophysical and geochemical data have been obtained, and the variation of seismic, geophysical and geochemical parameters was recorded before several strong earthquakes and some moderate earthquakes in this area. In this paper, we chose 19 high qualified observatory parameters in this area to establish a multidisciplinary system for earthquake forecast, including apparent resistivity, ground water level, ground-level, tilt, radon content in groundwater, volumetric strain, Hg content in groundwater, low frequency electric signal. We calculate the synthetic information by a simple algorithm. The procedure is: firstly, we detect the abnormal intervals of the observatory data by some data analysis methods such as filtering, differencing, etc.; secondly, we endow the value of 1 to the abnormal intervals and 0 to other intervals and produce a new time series of data set of the ith parameter; thirdly, we compose the value of the new time series of 19 observatory parameters and obtain the normalized value as called synthetic information. The result shows that there are high correlations between the high synthetic information and the earthquakes with M ≥ 5.0 in this area. The earthquakes almost occurred several days to several months after the peak value of the synthetic information. This synthetic method might be taken for a short-term prediction method for M ≥ 5.0 earthquakes in this area. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Yongxian Zhang & Fuwang Gao & Jianjun Ping & Xiaotao Zhang, 2013. "A synthetic method for earthquake prediction by multidisciplinary data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(2), pages 1199-1209, November.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:2:p:1199-1209
    DOI: 10.1007/s11069-011-9961-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9961-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9961-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Li & Jingyu Su & Donghui Ma & Wei Wang, 2015. "The study on forecasting the surface rupture width under strong earthquake based on information diffusion methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1871-1882, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:2:p:1199-1209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.