IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i1p889-903.html
   My bibliography  Save this article

Aerosol pollution and its impact on regional climate during Holi festival inferred from ground-based and satellite remote sensing observations

Author

Listed:
  • C. Simha
  • P. Devara
  • S. Saha

Abstract

In this paper, we report some salient features from a suit of special experiments that have been conducted over a coastal site (Mumbai) during February 23–March 03, 2010, encompassing an Indian festival, namely Holi, using solar radiometers and pyranometer. The results of the analysis of observations at the experimental site show higher (more than double) aerosol optical depth, water vapor, and lower down-welling short-wave radiative flux during the festival period. This is considered to be due to anthropogenic activities and associated meteorological conditions at the experimental location. To illustrate further, Angstrom parameters (alpha, denoting the aerosol size distribution, and beta, representing the loading) are examined. These parameters are found to be greater on Holi day as compared to those on the normal (control, pre-, and post-Holi) days, suggesting an increase in accumulation mode (smaller size) particle loading. The aerosol size spectra exhibited bimodal/power-law distribution with a dominant peak, modulated by anthropogenic activities, involving local and long-range transport of dust and smoke (emanated from biomass-burning) aerosols, which is consistent with MODIS satellite observations. The aerosol direct radiative forcing estimation indicated cooling at the bottom of the atmosphere. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • C. Simha & P. Devara & S. Saha, 2013. "Aerosol pollution and its impact on regional climate during Holi festival inferred from ground-based and satellite remote sensing observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 889-903, October.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:889-903
    DOI: 10.1007/s11069-013-0743-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0743-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0743-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramesh P. Singh & Sarvan Kumar & Abhay K. Singh, 2018. "Elevated Black Carbon Concentrations and Atmospheric Pollution around Singrauli Coal-Fired Thermal Power Plants (India) Using Ground and Satellite Data," IJERPH, MDPI, vol. 15(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:889-903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.