IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v66y2013i3p1327-1343.html
   My bibliography  Save this article

Potential impacts of extreme storm surges on a low-lying densely populated coastline: the case of Dunkirk area, Northern France

Author

Listed:
  • Aurélie Maspataud
  • Marie-Hélène Ruz
  • Stéphane Vanhée

Abstract

Along the southern coast of the North Sea, a large proportion of the Flemish coastal plain consists of densely populated reclaimed land, much of which lying below mean high tide level. This is particularly the case along the northern coast of France, from Dunkirk to the Belgium border, where the shoreline consists of coastal dunes that protect low-lying reclaimed lands from marine flooding. This area is vulnerable and subject to several risks. Extreme weather conditions could induce strong surges that could cause (1) a shoreline retreat, (2) marine submersion and (3) land and/or urban flooding due to drainage problems of the polders. Highly energetic events such as the November 2007 storm could have had much more severe consequences especially if they occurred at high tide and/or during a spring tide. In the current context of global change and projected sea-level rise, it is then important for the local authorities to take into account the potential impacts and return periods of such events, in order to implement coastal risk policies prevention and management, to reinforce sea defense, increase pumping station efficiency and plan warning systems against marine submersion and polder flooding, which is not the case yet in Northern France. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Aurélie Maspataud & Marie-Hélène Ruz & Stéphane Vanhée, 2013. "Potential impacts of extreme storm surges on a low-lying densely populated coastline: the case of Dunkirk area, Northern France," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1327-1343, April.
  • Handle: RePEc:spr:nathaz:v:66:y:2013:i:3:p:1327-1343
    DOI: 10.1007/s11069-012-0210-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0210-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0210-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. F. G. Schmitt & A. Crapoulet & A. Hequette & Y. Huang, 2018. "Nonlinear dynamics of the sea level time series in the eastern English Channel," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 267-285, March.
    2. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    3. Robert, Samuel & Schleyer-Lindenmann, Alexandra, 2021. "How ready are we to cope with climate change? Extent of adaptation to sea level rise and coastal risks in local planning documents of southern France," Land Use Policy, Elsevier, vol. 104(C).
    4. Nathalie Giloy & Yasser Hamdi & Lise Bardet & Emmanuel Garnier & Claire-Maire Duluc, 2019. "Quantifying historic skew surges: an example for the Dunkirk Area, France," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 869-893, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:66:y:2013:i:3:p:1327-1343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.