IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v65y2013i2p1027-1044.html
   My bibliography  Save this article

Seismicity of Gujarat

Author

Listed:
  • B. Rastogi
  • Santosh Kumar
  • Sandeep Aggrawal

Abstract

Paper describes tectonics, earthquake monitoring, past and present seismicity, catalogue of earthquakes and estimated return periods of large earthquakes in Gujarat state, western India. The Gujarat region has three failed Mesozoic rifts of Kachchh, Cambay, and Narmada, with several active faults. Kachchh district of Gujarat is the only region outside Himalaya-Andaman belt that has high seismic hazard of magnitude 8 corresponding to zone V in the seismic zoning map of India. The other parts of Gujarat have seismic hazard of magnitude 6 or less. Kachchh region is considered seismically one of the most active intraplate regions of the World. It is known to have low seismicity but high hazard in view of occurrence of fewer smaller earthquakes of M ≤ 6 in a region having three devastating earthquakes that occurred during 1819 (M w 7.8), 1956 (M w 6.0) and 2001 (M w 7.7). The second in order of seismic status is Narmada rift zone that experienced a severely damaging 1970 Bharuch earthquake of M5.4 at its western end and M ≥ 6 earthquakes further east in 1927 (Son earthquake), 1938 (Satpura earthquake) and 1997 (Jabalpur earthquake). The Saurashtra Peninsula south of Kachchh has experienced seismicity of magnitude less than 6. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • B. Rastogi & Santosh Kumar & Sandeep Aggrawal, 2013. "Seismicity of Gujarat," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1027-1044, January.
  • Handle: RePEc:spr:nathaz:v:65:y:2013:i:2:p:1027-1044
    DOI: 10.1007/s11069-011-0077-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-0077-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-0077-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Singh & O. Mishra & B. Rastogi & Dinesh Kumar, 2011. "3-D seismic structure of the Kachchh, Gujarat, and its implications for the earthquake hazard mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(1), pages 83-105, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aggarwal, Sandeep Kumar & Pastén, Denisse & Khan, Prosanta Kumar, 2017. "Multifractal analysis of 2001 Mw7.7 Bhuj earthquake sequence in Gujarat, Western India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 488(C), pages 177-186.
    2. Asim Bashir & Dhiman Basu, 2018. "Revisiting probabilistic seismic hazard analysis of Gujarat: an assessment of Indian design spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1127-1164, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Singh & Indrajit Roy & Santosh Kumar & J. Kayal, 2015. "Seismic source characteristics in Kachchh and Saurashtra regions of Western India: b-value and fractal dimension mapping of aftershock sequences," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 33-49, May.
    2. Santosh Kumar & Dinesh Kumar & B. Rastogi, 2014. "Source parameters and scaling relations for small earthquakes in the Kachchh region of Gujarat, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1269-1289, September.
    3. A. Singh & N. Annam & Santosh Kumar, 2014. "Assessment of predominant frequencies using ambient vibration in the Kachchh region of western India: implications for earthquake hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1291-1309, September.
    4. Sanjay K. Prajapati & O. P. Mishra, 2021. "Co-seismic deformation and slip distribution of 5 April 2017 Mashhad, Iran earthquake using InSAR sentinel-1A image: implication to source characterization and future seismogenesis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 3039-3057, February.
    5. Bishwajit Chakraborty & S. Karisiddaiah & A. Menezes & K. Haris & G. Gokul & W. Fernandes & G. Kavitha, 2014. "Characterizing slope morphology using multifractal technique: a study from the western continental margin of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 547-565, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:65:y:2013:i:2:p:1027-1044. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.