IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v65y2013i1p707-722.html
   My bibliography  Save this article

Slope reliability analysis by updated support vector machine and Monte Carlo simulation

Author

Listed:
  • Shaojun Li
  • Hong-Bo Zhao
  • Zhongliang Ru

Abstract

This paper presents a new methodology for slope reliability analysis by integrating the technologies of updated support vector machine (SVM) and Monte Carlo simulation (MCS). MCS is a powerful tool that may be used to solve a broad range of reliability problems and has therefore become widely used in slope reliability analysis. However, MCS often involves a great number of slope stability analysis computations, a process that requires excessive time consumption. The updated SVM is introduced in order to build the relationship between factor of safety and random variables of slope, contributing to reducing a large number of normal computing tasks and enlarging the problem scale and sample size of MCS. In the algorithm of the updated SVM, the particle swarm optimization method is adopted in order to seek the optimal SVM parameters, enhancing the performance of SVM for solving complex problems in slope stability analysis. Finally, the integrating method is applied to a classic slope for addressing the problem of reliability analysis. The results of this study indicate that the new methodology is capable of obtaining positive results that are consistent with the results of classic solutions; therefore, the methodology is proven to be a powerful and effective tool in slope reliability analysis. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Shaojun Li & Hong-Bo Zhao & Zhongliang Ru, 2013. "Slope reliability analysis by updated support vector machine and Monte Carlo simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 707-722, January.
  • Handle: RePEc:spr:nathaz:v:65:y:2013:i:1:p:707-722
    DOI: 10.1007/s11069-012-0396-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0396-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0396-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xuedong & Chang, Yanchao & Mao, Jianxu & Du, Zhaoping, 2013. "Predicting reliability and failures of engine systems by single multiplicative neuron model with iterated nonlinear filters," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 244-250.
    2. Tonghui Wei & Wenjie Zuo & Hongwei Zheng & Feng Li, 2021. "Slope hybrid reliability analysis considering the uncertainty of probability-interval using three-parameter Weibull distribution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 565-586, January.
    3. Arsalan Mahmoodzadeh & Mokhtar Mohammadi & Hunar Farid Hama Ali & Hawkar Hashim Ibrahim & Sazan Nariman Abdulhamid & Hamid Reza Nejati, 2022. "Prediction of safety factors for slope stability: comparison of machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1771-1799, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:65:y:2013:i:1:p:707-722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.