IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v64y2012i1p797-820.html
   My bibliography  Save this article

Experimental and numerical investigation of slope stabilization by stone columns

Author

Listed:
  • Mustafa Vekli
  • Mustafa Aytekin
  • S. Banu İkizler
  • Ümit Çalik

Abstract

In this study, an investigation has been performed on a small-scaled laboratory model and its numerical model by the code of PLAXIS to see the effect of stone columns (SCs) placed vertically in a soft soil slope in terms of slope stability, bearing capacity, and settlements. Also, several hypothetical cases have been examined by the code. Effect of s/D ratios (distance between the vertical axes of SCs/diameter of SCs) was also investigated on slope stability, ultimate bearing capacity, and settlement of a footing rested on top of the slope on the laboratory model. Firstly, ultimate bearing capacity and settlement properties of soil were determined for unreinforced soil that is no SCs were considered. Then, some values of soil were determined after the installation of stone columns with various ratios of s/D. The ratios of s/D were 2, 3, 3.5, and 4. The tests carried out on the laboratory model were simulated and numerically analyzed in two dimensions under plain-strain conditions by Mohr–Coulomb model. In the analyses, PLAXIS computer code, which is based on finite elements method, has been employed. Then, a parametric investigation was carried out to see the effect of SCs on the stability of the slope. In the parametric investigation, several hypothetical cases that were one layer of soil and two layers of soil with the presence of water in the reservoir side of the slopes were examined. The analyses in the investigation were performed by the PLAXIS code for various slope angles β, ratios of c/(γH), and ratios of s/D. From the test results of the laboratory model, and the results obtained from the numerical analyses, it was observed that the bearing capacity of the footing constructed on the top of the slope in soft soil was increased; settlements were decreased after the improvement with SCs. From the analyses performed, it was found that the SCs increased the stability of slope 1.18- to 1.62-fold as a relative effect of different parameters. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Mustafa Vekli & Mustafa Aytekin & S. Banu İkizler & Ümit Çalik, 2012. "Experimental and numerical investigation of slope stabilization by stone columns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 797-820, October.
  • Handle: RePEc:spr:nathaz:v:64:y:2012:i:1:p:797-820
    DOI: 10.1007/s11069-012-0272-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0272-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0272-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferhat Şahinkaya & Mustafa Vekli & Cenk Cuma Çadır, 2017. "Numerical analysis under seismic loads of soils improvement with floating stone columns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 891-917, September.
    2. Cenk Cuma Çadır & Mustafa Vekli & Ferhat Şahinkaya, 2021. "Numerical analysis of a finite slope improved with stone columns under the effect of earthquake force," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 173-211, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:64:y:2012:i:1:p:797-820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.