IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v64y2012i1p593-614.html
   My bibliography  Save this article

Comparison of near-fault and far-fault ground motion effects on geometrically nonlinear earthquake behavior of suspension bridges

Author

Listed:
  • Süleyman Adanur
  • Ahmet Altunişik
  • Alemdar Bayraktar
  • Mehmet Akköse

Abstract

This paper presents a comparison of near-fault and far-fault ground motion effects on geometrically nonlinear earthquake behavior of suspension bridges. Boğaziçi (The First Bosporus) and Fatih Sultan Mehmet (Second Bosporus) suspension bridges built in Istanbul, Turkey, are selected as numerical examples. Both bridges have almost the same span. While Boğaziçi Suspension Bridge has inclined hangers, Fatih Sultan Mehmet Suspension Bridge has vertical hangers. Geometric nonlinearity including P-delta effects from self-weight of the bridges is taken into account in the determination of the dynamic behavior of the suspension bridges for near-fault and far-fault ground motions. Near-fault and far-fault strong ground motion records, which have approximately identical peak ground accelerations, of 1999 Chi-Chi, 1999 Kocaeli, and 1979 Imperial Valley earthquakes are selected for the analyses. Displacements and internal forces of the bridges are determined using the finite element method including geometric nonlinearity. The displacements and internal forces obtained from the dynamic analyses of suspension bridges subjected to each fault effect are compared with each other. It is clearly seen that near-fault ground motions are more effective than far-fault ground motion on the displacements and internal forces such as bending moment, shear force and axial forces of the suspension bridges. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Süleyman Adanur & Ahmet Altunişik & Alemdar Bayraktar & Mehmet Akköse, 2012. "Comparison of near-fault and far-fault ground motion effects on geometrically nonlinear earthquake behavior of suspension bridges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 593-614, October.
  • Handle: RePEc:spr:nathaz:v:64:y:2012:i:1:p:593-614
    DOI: 10.1007/s11069-012-0259-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0259-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0259-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Özlem Çavdar, 2022. "Seismic performance of a high-rise building by using linear and nonlinear methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1359-1378, June.
    2. Gaohui Wang & Sherong Zhang & Chao Wang & Mao Yu, 2014. "Seismic performance evaluation of dam-reservoir-foundation systems to near-fault ground motions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 651-674, June.
    3. Wanpeng Ding & Zhijian Wu & Beilei Zhan & Jian Liu & Jun Bi, 2023. "Analysis of seismic damage of a highway bridge during the 2021 Ms 7.4 earthquake in Maduo County, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2419-2434, July.
    4. Soumya Gorai & Damodar Maity, 2021. "Numerical investigation on seismic behaviour of aged concrete gravity dams to near source and far source ground motions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 943-966, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:64:y:2012:i:1:p:593-614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.