IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v63y2012i1p51-84.html
   My bibliography  Save this article

Geomorphic and stratigraphic evidence for an unusual tsunami or storm a few centuries ago at Anegada, British Virgin Islands

Author

Listed:
  • Brian Atwater
  • Uri ten Brink
  • Mark Buckley
  • Robert Halley
  • Bruce Jaffe
  • Alberto López-Venegas
  • Eduard Reinhardt
  • Maritia Tuttle
  • Steve Watt
  • Yong Wei

Abstract

Waters from the Atlantic Ocean washed southward across parts of Anegada, east-northeast of Puerto Rico, during a singular event a few centuries ago. The overwash, after crossing a fringing coral reef and 1.5 km of shallow subtidal flats, cut dozens of breaches through sandy beach ridges, deposited a sheet of sand and shell capped with lime mud, and created inland fields of cobbles and boulders. Most of the breaches extend tens to hundreds of meters perpendicular to a 2-km stretch of Anegada’s windward shore. Remnants of the breached ridges stand 3 m above modern sea level, and ridges seaward of the breaches rise 2.2–3.0 m high. The overwash probably exceeded those heights when cutting the breaches by overtopping and incision of the beach ridges. Much of the sand-and-shell sheet contains pink bioclastic sand that resembles, in grain size and composition, the sand of the breached ridges. This sand extends as much as 1.5 km to the south of the breached ridges. It tapers southward from a maximum thickness of 40 cm, decreases in estimated mean grain size from medium sand to very fine sand, and contains mud laminae in the south. The sand-and-shell sheet also contains mollusks—cerithid gastropods and the bivalve Anomalocardia—and angular limestone granules and pebbles. The mollusk shells and the lime-mud cap were probably derived from a marine pond that occupied much of Anegada’s interior at the time of overwash. The boulders and cobbles, nearly all composed of limestone, form fields that extend many tens of meters generally southward from limestone outcrops as much as 0.8 km from the nearest shore. Soon after the inferred overwash, the marine pond was replaced by hypersaline ponds that produce microbial mats and evaporite crusts. This environmental change, which has yet to be reversed, required restriction of a former inlet or inlets, the location of which was probably on the island’s south (lee) side. The inferred overwash may have caused restriction directly by washing sand into former inlets, or indirectly by reducing the tidal prism or supplying sand to post-overwash currents and waves. The overwash happened after A.D. 1650 if coeval with radiocarbon-dated leaves in the mud cap, and it probably happened before human settlement in the last decades of the 1700s. A prior overwash event is implied by an inland set of breaches. Hypothetically, the overwash in 1650–1800 resulted from the Antilles tsunami of 1690, the transatlantic Lisbon tsunami of 1755, a local tsunami not previously documented, or a storm whose effects exceeded those of Hurricane Donna, which was probably at category 3 as its eye passed 15 km to Anegada’s south in 1960. Copyright The Author(s) (outside the USA) 2012

Suggested Citation

  • Brian Atwater & Uri ten Brink & Mark Buckley & Robert Halley & Bruce Jaffe & Alberto López-Venegas & Eduard Reinhardt & Maritia Tuttle & Steve Watt & Yong Wei, 2012. "Geomorphic and stratigraphic evidence for an unusual tsunami or storm a few centuries ago at Anegada, British Virgin Islands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(1), pages 51-84, August.
  • Handle: RePEc:spr:nathaz:v:63:y:2012:i:1:p:51-84
    DOI: 10.1007/s11069-010-9622-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-010-9622-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-010-9622-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suzanne E. Palmer & Michael J. Burn & Jonathan Holmes, 2020. "A multiproxy analysis of extreme wave deposits in a tropical coastal lagoon in Jamaica, West Indies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2531-2560, December.
    2. J. F. Dewey & J. Goff & P. D. Ryan, 2021. "The origins of marine and non-marine boulder deposits: a brief review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1981-2002, November.

    More about this item

    Keywords

    Tsunami; Stratigraphy; Caribbean;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:63:y:2012:i:1:p:51-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.