IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v62y2012i3p1109-1123.html
   My bibliography  Save this article

ROckfall risk MAnagement assessment: the RO.MA. approach

Author

Listed:
  • Claudia Mignelli
  • Stefano Russo
  • Daniele Peila

Abstract

The analysis of risk for vehicles and drivers as a result of rockfall on a road is relevant to design management in geotechnical engineering. This process is very complex due to the large number of parameters involved. In this paper, we discuss risk analysis and management procedures for roads subject to rockfall phenomena. To this aims, we are proposing a quantitative method (the RO.MA. approach). We developed an abacus to define the threshold values of acceptable rockfall risk for a given road. Rockfall risk is calculated using an Event Tree approach and compared with the abacus thresholds to evaluate road safety and the need for additional protective measures to reduce the risk to an acceptable level. The approach was successfully applied at a test site located in Bard, Aosta Valley, north-western Italy. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Claudia Mignelli & Stefano Russo & Daniele Peila, 2012. "ROckfall risk MAnagement assessment: the RO.MA. approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 1109-1123, July.
  • Handle: RePEc:spr:nathaz:v:62:y:2012:i:3:p:1109-1123
    DOI: 10.1007/s11069-012-0137-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0137-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0137-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Mineo & Giovanna Pappalardo & Michele Mangiameli & Santo Campolo & Giuseppe Mussumeci, 2018. "Rockfall Analysis for Preliminary Hazard Assessment of the Cliff of Taormina Saracen Castle (Sicily)," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    2. Claudia Mignelli & Daniele Peila & Stefano Lo Russo & Sara Ratto & Massimo Broccolato, 2014. "Analysis of rockfall risk on mountainside roads: evaluation of the effect of protection devices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(1), pages 23-35, August.
    3. Franck Bourrier & Julien Baroth & Stéphane Lambert, 2016. "Accounting for the variability of rock detachment conditions in designing rockfall protection structures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 365-385, March.
    4. Reza Nassirzadeh Goorchi & Mehdi Amini & Hossein Memarian, 2018. "A new rating system approach for risk analysis of rock slopes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 75-102, April.
    5. Valerio De Biagi & Maria Lia Napoli & Monica Barbero, 2017. "A quantitative approach for the evaluation of rockfall risk on buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1059-1086, September.
    6. Daniele Giordan & Martina Cignetti & Danilo Godone & Davide Bertolo & Marco Paganone, 2021. "Definition of an Operative Methodology for the Management of Rockfalls along with the Road Network," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    7. Franck Bourrier & Julien Baroth & Stéphane Lambert, 2016. "Accounting for the variability of rock detachment conditions in designing rockfall protection structures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 365-385, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:62:y:2012:i:3:p:1109-1123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.