IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v61y2012i2p673-687.html
   My bibliography  Save this article

Model for prediction of sea dike breaching initiated by breaking wave impact

Author

Listed:
  • Grzegorz Stanczak
  • Hocine Oumeraci

Abstract

A computational model system is proposed for the prediction of sea dike breaching initiated from the seaward side by breaking wave impact with the focus on the application of the model system for the estimation failure probability of the defence structure. The described model system is built using a number of existing models for the calculation of grass, clay, and sand erosion. The parameters identified as those having the most significant influence on the estimation of the failure have been described stochastically. Monte Carlo simulations to account for uncertainties of the relevant input parameters and the model itself have been performed and the probabilities of the breach initiation and of the full dike breaching have been calculated. This will form the basis to assess the coastal flood risk due to dike breaching. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Grzegorz Stanczak & Hocine Oumeraci, 2012. "Model for prediction of sea dike breaching initiated by breaking wave impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 673-687, March.
  • Handle: RePEc:spr:nathaz:v:61:y:2012:i:2:p:673-687
    DOI: 10.1007/s11069-011-0054-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-0054-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-0054-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hai Trung Le & H. J. Verhagen & J. K. Vrijling, 2017. "Damage to grass dikes due to wave overtopping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 849-875, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:61:y:2012:i:2:p:673-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.