IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v61y2012i1p29-49.html
   My bibliography  Save this article

Automated mapping of rock slope geometry, kinematics and stability with RSS-GIS

Author

Listed:
  • Andreas Günther
  • Jan Wienhöfer
  • Heinz Konietzky

Abstract

A GIS-implemented, deterministic approach for the automated spatial evaluation of geometrical and kinematical properties of rock slope terrains is presented. Based on spatially distributed directional information on planar geological fabrics and DEM-derived topographic attribute data, the internal geometry of rock slopes can be characterized on a grid cell basis. For such computations, different approaches for the analysis and regionalization of available structural directional information applicable in specific tectonic settings are demonstrated and implemented in a GIS environment. Simple kinematical testing procedures based on feasibility criteria can be conducted on a pixel basis to determine which failure mechanisms are likely to occur at particular terrain locations. In combination with hydraulic and strength data on geological discontinuities, scenario-based rock slope stability evaluations can be performed. For conceptual investigations on rock slope failure processes, a GIS-based specification tool for a 2-D distinct element code (UDEC) was designed to operate with the GIS-encoded spatially distributed rock slope data. The concepts of the proposed methodology for rock slope hazard assessments are demonstrated at three different test sites in Germany. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Andreas Günther & Jan Wienhöfer & Heinz Konietzky, 2012. "Automated mapping of rock slope geometry, kinematics and stability with RSS-GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 29-49, March.
  • Handle: RePEc:spr:nathaz:v:61:y:2012:i:1:p:29-49
    DOI: 10.1007/s11069-011-9771-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9771-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9771-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jagadish Kundu & Kripamoy Sarkar & Ebrahim Ghaderpour & Gabriele Scarascia Mugnozza & Paolo Mazzanti, 2023. "A GIS-Based Kinematic Analysis for Jointed Rock Slope Stability: An Application to Himalayan Slopes," Land, MDPI, vol. 12(2), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:61:y:2012:i:1:p:29-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.