IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v60y2012i2p715-726.html
   My bibliography  Save this article

Climate change impacts on extreme floods II: improving flood future peaks simulation using non-stationary frequency analysis

Author

Listed:
  • Ousmane Seidou
  • Andrea Ramsay
  • Ioan Nistor

Abstract

In the companion paper, Seidou et al. ( 2011 , submitted) have shown that when adequate meteorological data are available to calibrate rainfall-runoff models, using a non-stationary GEV model with the simulated flows can provide a better description of flood peaks distributions than directly using the simulated peaks. Their methodology is extended in this paper to improve future flood peaks simulation under a changing climate. In this case, the rainfall-runoff model is forced with the downscaled outputs of the Canadian General Circulation Model CGCM3. Special attention is paid to the statistical downscaling of precipitations, as the choice of the transfer function has a significant influence on the performance of non-stationary GEV model. Stepwise regression was initially used to describe precipitation occurrence and intensity, but the patterns of the simulated hydrographs were found to be unsatisfactory. After precipitation occurrence model was successfully replaced with an ensemble of regression trees, the non-stationary GEV model was shown to provide a better description of flood peaks in the observation period. The non-stationary GEV model shows that exceedance probabilities on the Kemptville Creek will gradually rise up to 34% above current levels in 2100 for a 20-year service life. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Ousmane Seidou & Andrea Ramsay & Ioan Nistor, 2012. "Climate change impacts on extreme floods II: improving flood future peaks simulation using non-stationary frequency analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 715-726, January.
  • Handle: RePEc:spr:nathaz:v:60:y:2012:i:2:p:715-726
    DOI: 10.1007/s11069-011-0047-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-0047-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-0047-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balqis M. Rehan, 2018. "An innovative micro-scale approach for vulnerability and flood risk assessment with the application to property-level protection adoptions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1039-1057, April.
    2. Landucci, Gabriele & Necci, Amos & Antonioni, Giacomo & Tugnoli, Alessandro & Cozzani, Valerio, 2014. "Release of hazardous substances in flood events: Damage model for horizontal cylindrical vessels," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 125-145.
    3. Dong-dong Zhang & Deng-hua Yan & Yi-Cheng Wang & Fan Lu & Shao-hua Liu, 2015. "GAMLSS-based nonstationary modeling of extreme precipitation in Beijing–Tianjin–Hebei region of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1037-1053, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:60:y:2012:i:2:p:715-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.