IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v58y2011i3p1209-1223.html
   My bibliography  Save this article

Causes of catastrophic failure of Tam Pokhari moraine dam in the Mt. Everest region

Author

Listed:
  • Rabindra Osti
  • Tara Bhattarai
  • Katsuhito Miyake

Abstract

The moraine dam of the Tam Pokhari glacial lake breached on 3 September 1998 and caused a catastrophic flood in the downstream areas. To learn from the event, a field survey was conducted. The survey team found that a landslide, which is considered to be responsible for the outburst flood, occurred in the northeast-facing slope of the moraine dam. The dam internal structure played a crucial role in forming a landslide that triggered the excess overflow and finally the breach of the dam. The internal structure of the dam was made of alternating layers of finer and coarser sediments inclining at 30° downstream and layers are truncated in the upslope direction by a huge pile of unconsolidated and structureless moraine materials. Since the upstream slope angle of the dam i.e., 40° is larger than the angle of repose i.e. 35° of sediments, the increased pore water pressure in the dam triggered a landslide. The rainfall and seismological activities of that particular day, which hit the record high, were crucial in triggering the failure. It is estimated that the dam’s north and northeast-facing slopes completely slid involving about 30,000 m 3 of sediment mass of unconsolidated moraine materials above the shear plane. A slope stability analysis was also performed. The calculated safety factor was 0.85, and the calculated slip circle agreed with the shear plane marked in the dam. About 18 million cubic metres of water was swiftly released due to the sudden breach of the moraine dam. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Rabindra Osti & Tara Bhattarai & Katsuhito Miyake, 2011. "Causes of catastrophic failure of Tam Pokhari moraine dam in the Mt. Everest region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1209-1223, September.
  • Handle: RePEc:spr:nathaz:v:58:y:2011:i:3:p:1209-1223
    DOI: 10.1007/s11069-011-9723-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9723-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9723-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. K. Sharma & Pranay Pradhan & N. P. Sharma & D. G. Shrestha, 2018. "Remote sensing and in situ-based assessment of rapidly growing South Lhonak glacial lake in eastern Himalaya, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 393-409, August.
    2. Xiang Wang & Guo Chen & Xiaoai Dai & Jingjing Zhao & Xian Liu & Yu Gao & Junmin Zhang & Yongjun Chen & Xiaozhen Li & Wenyi Qin & Peng Wang, 2022. "Improved Process Management of Glacial Lake Outburst Flood Hazards by Integrating Modular Monitoring, Assessment, and Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2343-2358, May.
    3. Fjóla Sigtryggsdóttir & Jónas Snæbjörnsson & Lars Grande & Ragnar Sigbjörnsson, 2015. "Methodology for geohazard assessment for hydropower projects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1299-1331, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:58:y:2011:i:3:p:1209-1223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.