IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v52y2010i1p117-142.html
   My bibliography  Save this article

The simulation of heavy rainfall episode over Mumbai: impact of horizontal resolutions and cumulus parameterization schemes

Author

Listed:
  • Sanjib Deb
  • C. Kishtawal
  • V. Bongirwar
  • P. Pal

Abstract

In this study, the simulation of an extreme weather event like heavy rainfall over Mumbai (India) on July 26, 2005 has been attempted with different horizontal resolutions using the Advanced Research Weather Research Forecast model version 2.0.1 developed at the National Center for Atmospheric Research (NCAR), USA. The study uses the Betts–Miller–Janjic (BMJ) and the Grell–Devenyi ensemble (GDE) cumulus parameterization schemes in single and nested domain configurations. The model performance was evaluated by examining the different predicted parameters like upper and lower level circulations, moisture, temperature, and rainfall. The large-scale circulation features, moisture, and temperature were compared with the National Centers for Environmental Prediction analyses. The rainfall prediction was assessed quantitatively by comparing rainfall from the Tropical Rainfall Measuring Mission products and the observed station values reported in the Indian Daily Weather Reports from India Meteorological Department (IMD). The quantitative validation of the simulated rainfall was done by calculating the categorical skill scores like frequency bias, threat scores (TS), and equitable threat scores (ETS). It is found that in all simulations, both in single and nested domains, the GDE scheme has outperformed the BMJ scheme for the simulation of rainfall for this specific event. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Sanjib Deb & C. Kishtawal & V. Bongirwar & P. Pal, 2010. "The simulation of heavy rainfall episode over Mumbai: impact of horizontal resolutions and cumulus parameterization schemes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 117-142, January.
  • Handle: RePEc:spr:nathaz:v:52:y:2010:i:1:p:117-142
    DOI: 10.1007/s11069-009-9361-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-009-9361-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-009-9361-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. U. Mohanty & M. Mandal & S. Raman, 2004. "Simulation of Orissa Super Cyclone (1999) using PSU/NCAR Mesoscale Model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(2), pages 373-390, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Fadnavis & Medha Deshpande & Sachin Ghude & P. Ernest Raj, 2014. "Simulation of severe thunder storm event: a case study over Pune, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 927-943, June.
    2. M. Ahasan & A. Khan, 2013. "Simulation of a flood producing rainfall event of 29 July 2010 over north-west Pakistan using WRF-ARW model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 351-363, October.
    3. Nafiseh Pegahfar & Maryam Gharaylou & Mohammad Hossein Shoushtari, 2022. "Assessing the performance of the WRF model cumulus parameterization schemes for the simulation of five heavy rainfall events over the Pol-Dokhtar, Iran during 1999–2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 253-279, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yashvant Das, 2018. "Parametric modeling of tropical cyclone wind fields in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1049-1084, September.
    2. V. Yesubabu & C. Srinivas & S. Ramakrishna & K. Hari Prasad, 2014. "Impact of period and timescale of FDDA analysis nudging on the numerical simulation of tropical cyclones in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2109-2128, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:52:y:2010:i:1:p:117-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.