IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v50y2009i3p413-431.html
   My bibliography  Save this article

Numerical simulation of typhoon surges along the coast of Taiwan

Author

Listed:
  • Hsien-Wen Li
  • Cheng-Han Tsai
  • Yao-Tsai Lo

Abstract

A numerical model has been designed to study the storm surge induced by typhoon along the coast of Taiwan. The governing equations have been expressed in spherical coordinate system, and a finite difference method has been used to solve them. In the system of hydrodynamical equations, the nonlinear advection and lateral eddy viscosity terms are prominent in shallow coastal waters. Air pressure gradient and wind stresses are the driving forces in the model of typhoon surge. The model has been verified with storm surges induced by Typhoons Herb in 1996, and by typhoons Kai-Tak and Bilis in 2000. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Hsien-Wen Li & Cheng-Han Tsai & Yao-Tsai Lo, 2009. "Numerical simulation of typhoon surges along the coast of Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 413-431, September.
  • Handle: RePEc:spr:nathaz:v:50:y:2009:i:3:p:413-431
    DOI: 10.1007/s11069-008-9308-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-008-9308-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-008-9308-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Zhang & Yu Huang & Yangjuan Bao, 2016. "The mechanism of shallow submarine landslides triggered by storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1373-1383, March.
    2. Min Zhang & Yu Huang & Yangjuan Bao, 2016. "The mechanism of shallow submarine landslides triggered by storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1373-1383, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:50:y:2009:i:3:p:413-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.