IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v47y2008i3p577-591.html
   My bibliography  Save this article

A multiple scale modeling system for coastal hurricane wind damage mitigation

Author

Listed:
  • Ping Zhu

Abstract

Hurricane wind damage constitutes the largest percentage of catastrophic insured losses in the US. Yet the complicated wind structures and their changes are not fully understood and, thus, have not been considered in current risk catastrophic models. To obtain realistic landfall hurricane surface winds, a large eddy simulation (LES) framework in a weather forecasting mode has been developed from a multiple nested Weather Research & Forecasting (WRF) model to explicitly simulate a spectrum of scales from large-scale background flow, hurricane vortex, mesoscale organizations, down to fine-scale turbulent eddies in a unified system. The unique WRF-LES enables the high resolution data to be generated in a realistic environment as a hurricane evolves. In this paper, a simulation of the landfalling Hurricane Katrina is presented to demonstrate various features of the WRF-LES. It shows that the localized damaging winds are caused by the large eddy circulations generated in the hurricane boundary layer. With a sufficient computational power, WRF-LES has the potential to be developed into the next generation operational public wind-field model for hurricane wind damage mitigation. Copyright Springer Science+Business Media B.V. 2008

Suggested Citation

  • Ping Zhu, 2008. "A multiple scale modeling system for coastal hurricane wind damage mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 577-591, December.
  • Handle: RePEc:spr:nathaz:v:47:y:2008:i:3:p:577-591
    DOI: 10.1007/s11069-008-9240-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-008-9240-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-008-9240-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Xue & Ying Li & Lili Song & Wenchao Chen & Binglan Wang, 2017. "A WRF-based engineering wind field model for tropical cyclones and its applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1735-1750, July.
    2. Vera Wendler-Bosco & Charles Nicholson, 2022. "Modeling the economic impact of incoming tropical cyclones using machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 487-518, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:47:y:2008:i:3:p:577-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.