IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v44y2008i1p129-146.html
   My bibliography  Save this article

The storage potential of different surface coverings for various scale storms on Wu-Tu watershed, Taiwan

Author

Listed:
  • Shin-Jen Cheng
  • Huey-Hong Hsieh
  • Cheng-Feng Lee
  • Yu-Ming Wang

Abstract

An impervious surface cover is continuously spreading over the Wu-Tu upstream watershed due to the concentrated population and raised economical demands, while that area also frequently suffers from heavy storms or typhoons during the summer season. The increased flood volume due to this extended imperviousness causes a greater potential hazard than that of the past. In order to evaluate the urbanized impacts on the watershed, a set of methods were used to estimate the changes of the watershed storage. This research chose 51 observed events from three raingauges on the Wu-Tu upstream watershed, Taiwan, to study the volume characteristic of abstracted rainwater. In the study, the block Kriging method was used to estimate the area rainfall and the hourly excess was derived through the non-linear programing (NLP). A total of 40 samples were calibrated through the hydrological model and the Soil Conservation Service (SCS) model using the optimum seeking method in order to search out and establish the best parameters that illustrate the hydrological and geomorphic conditions at that time. Eleven cases were used to examine the established relationship of the parameters and the impervious coverings. A design storm approach was used to view the changes of the volume for various scale storms/typhoons because of the different degrees of urbanization. Then, a diagram was designed to show the relationships that exist among the runoff coefficient, return period, and impervious surface. The satisfactory results show that storage capability of rainwater for various scale storms on the Wu-Tu watershed would be respectively reduced about 42–156 cms in different decrements up to now. Copyright Springer Science+Business Media B.V. 2008

Suggested Citation

  • Shin-Jen Cheng & Huey-Hong Hsieh & Cheng-Feng Lee & Yu-Ming Wang, 2008. "The storage potential of different surface coverings for various scale storms on Wu-Tu watershed, Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 44(1), pages 129-146, January.
  • Handle: RePEc:spr:nathaz:v:44:y:2008:i:1:p:129-146
    DOI: 10.1007/s11069-007-9146-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-007-9146-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-007-9146-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Lee & V. Singh, 2005. "Tank Model for Sediment Yield," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(4), pages 349-362, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shin-jen Cheng, 2011. "The best relationship between lumped hydrograph parameters and urbanized factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 853-867, March.
    2. Yu-ming Wang & Yu-ji Li & Shin-jen Cheng & Fu-ti Yang & Yin-ta Chen, 2015. "Effects of Spatial-Temporal Imperviousness on Hydrological Responses of Various Areas in an Urbanized Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3551-3567, August.
    3. Kang, Wei & Chai, Hongxiang & Zhang, Ganlin & Tan, Songming & Zhou, Yuming & Hu, Xuebin & Fang, Junhua & Zhang, Sai, 2016. "A technology for the standpipe in flat roof of green building community," Agricultural Water Management, Elsevier, vol. 174(C), pages 103-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin-jen Cheng, 2011. "The best relationship between lumped hydrograph parameters and urbanized factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 853-867, March.
    2. Shin-jen Cheng & Cheng-feng Lee & Ju-huang Lee, 2010. "Effects of Urbanization Factors on Model Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 775-794, March.
    3. Shin-Jen Cheng, 2010. "Generation of Runoff Components from Exponential Expressions of Serial Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3561-3590, October.
    4. Dereje Birhanu & Hyeonjun Kim & Cheolhee Jang & Sanghyun Park, 2018. "Does the Complexity of Evapotranspiration and Hydrological Models Enhance Robustness?," Sustainability, MDPI, vol. 10(8), pages 1-34, August.
    5. Jiang Wu & Jianzhong Zhou & Lu Chen & Lei Ye, 2015. "Coupling Forecast Methods of Multiple Rainfall–Runoff Models for Improving the Precision of Hydrological Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5091-5108, November.
    6. Pradeep Bhunya & S. Jain & P. Singh & S. Mishra, 2010. "A Simple Conceptual Model of Sediment Yield," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1697-1716, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:44:y:2008:i:1:p:129-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.