IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v41y2007i3p501-514.html
   My bibliography  Save this article

Modification of the loop current warm core eddy by Hurricane Gilbert (1988)

Author

Listed:
  • Xiaodong Hong
  • Simon Chang
  • Sethu Raman

Abstract

Numerical investigation of Hurricane Gilbert (1988) effect on the Loop Current warm core eddy (WCE) in the Gulf of Mexico is performed using the Modular Ocean Model version 2 (MOM2). Results show that the storm-induced maximum sea surface temperature (SST) decrease in Gilbert’s wake is over 2.5°C, as compared with the 3.5°C cooling in the absence of the WCE. The near-inertial oscillation in the wake reduces significantly in an along-track direction with the presence of the WCE. This effect is also reflected between the mixed layer and the thermocline, where the current directions are reversed with the upper layer. After two inertial periods (IP), the current reversal is much less obvious. In addition, it is demonstrated that Hurricane Gilbert wind stress increases the current speed of the WCE by approximate 133%. With the forcing of Gilbert, the simulated translation direction and speed of the WCE towards the Mexican coast are closer to the observed (42% more accurate in distance and 78% more accurate in direction) compared with the simulation without the Gilbert forcing. The simulated ocean response to Gilbert generally agrees with the recent observations in Hurricane Fabian. Copyright Springer Science+Business Media, Inc. 2007

Suggested Citation

  • Xiaodong Hong & Simon Chang & Sethu Raman, 2007. "Modification of the loop current warm core eddy by Hurricane Gilbert (1988)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 501-514, June.
  • Handle: RePEc:spr:nathaz:v:41:y:2007:i:3:p:501-514
    DOI: 10.1007/s11069-006-9057-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-006-9057-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-006-9057-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:41:y:2007:i:3:p:501-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.