IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v40y2007i2p339-356.html
   My bibliography  Save this article

Vulnerability assessment in a volcanic risk evaluation in Central Mexico through a multi-criteria-GIS approach

Author

Listed:
  • José Aceves-Quesada
  • Jesús Díaz-Salgado
  • Jorge López-Blanco

Abstract

The Valley of Toluca is a major industrial and agricultural area in Central Mexico, especially the City of Toluca, the capital of The State of Mexico. The Nevado de Toluca volcano is located to the southwest of The Toluca Basin. Results obtained from the vulnerability assessment phase of the study area (5,040 km 2 and 42 municipalities) are presented here as a part of a comprehensive volcanic risk assessment of The Toluca Basin. Information has been gathered and processed at a municipal level including thematic maps at 1:250,000 scale. A database has been built, classified and analyzed within a GIS environment; additionally, a Multi-Criteria Evaluation (MCE) approach was applied as an aid for the decision-making process. Cartographic results were five vulnerability maps: (1) Total Population, (2) Land Use/Cover, (3) Infrastructure, (4) Economic Units and (5) Total Vulnerability. Our main results suggest that the Toluca and Tianguistenco urban and industrial areas, to the north and northeast of The Valley of Toluca, are the most vulnerable areas, for their high concentration of population, infrastructure, economic activity, and exposure to volcanic events. Copyright Springer Science+Business Media B.V. 2007

Suggested Citation

  • José Aceves-Quesada & Jesús Díaz-Salgado & Jorge López-Blanco, 2007. "Vulnerability assessment in a volcanic risk evaluation in Central Mexico through a multi-criteria-GIS approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(2), pages 339-356, February.
  • Handle: RePEc:spr:nathaz:v:40:y:2007:i:2:p:339-356
    DOI: 10.1007/s11069-006-0018-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-006-0018-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-006-0018-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricia Romero-Lankao & Daniel M. Gnatz & Joshua B. Sperling, 2016. "Examining urban inequality and vulnerability to enhance resilience: insights from Mumbai, India," Climatic Change, Springer, vol. 139(3), pages 351-365, December.
    2. Mingze Li & Jun Lv & Xin Chen & Nan Jiang, 2015. "Provincial evaluation of vulnerability to geological disaster in China and its influencing factors: a three-stage DEA-based analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1649-1662, December.
    3. Sebastien Biass & Corine Frischknecht & Costanza Bonadonna, 2012. "A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador-Part II: vulnerability and risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 615-639, October.
    4. Elia A Machado & Samuel Ratick, 2018. "Implications of indicator aggregation methods for global change vulnerability reduction efforts," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1109-1141, October.
    5. Sebastien Biass & Corine Frischknecht & Costanza Bonadonna, 2013. "A fast GIS-based risk assessment for tephra fallout: the example of Cotopaxi volcano, Ecuador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 497-521, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:40:y:2007:i:2:p:339-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.