IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v39y2006i2p179-193.html
   My bibliography  Save this article

Effect of a submerged bay-mouth breakwater on tsunami behavior analyzed by 2D/3D hybrid model simulation

Author

Listed:
  • Koji Fujima

Abstract

The hybrid numerical model had been developed to simulate a complicated 3D flow around structures generated by tsunami. In the model, the conventional 2D model is adopted for the wide region far from structures and the 3D non-hydrostatic pressure model is used in the limited region adjacent to structures. The applicability of the model is shown by comparisons of the numerical results with the experimental results of the laboratory model tests and the numerical analysis results of the conventional whole 2D simulation. In addition, the effect of a submerged structure at the opening of a breakwater is discussed from the numerical simulations by the hybrid model. The submerged structure improves the stability of the rubble mound and reduces the tsunami inflow into the bay, while it increases the water surface velocity around the opening of the breakwater. The increase of surface velocity causes the increases of impulsive forces by collision with drafts and so on. Copyright Springer Science+Business Media B.V. 2006

Suggested Citation

  • Koji Fujima, 2006. "Effect of a submerged bay-mouth breakwater on tsunami behavior analyzed by 2D/3D hybrid model simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 39(2), pages 179-193, October.
  • Handle: RePEc:spr:nathaz:v:39:y:2006:i:2:p:179-193
    DOI: 10.1007/s11069-006-0022-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-006-0022-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-006-0022-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohua Bao & Bin Ye & Guanlin Ye & Feng Zhang, 2016. "Co-seismic and post-seismic behavior of a wall type breakwater on a natural ground composed of liquefiable layer," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1799-1819, September.
    2. Yu Huang & Chongqiang Zhu, 2015. "Numerical analysis of tsunami–structure interaction using a modified MPS method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2847-2862, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:39:y:2006:i:2:p:179-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.