IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v37y2006i3p331-372.html
   My bibliography  Save this article

Predicting Lahar-Inundation Zones: Case Study in West Mount Pinatubo, Philippines

Author

Listed:
  • Emmanuel Carranza
  • Ofelia Castro

Abstract

This paper demonstrates techniques for pre-eruption prediction of lahar-inundation zones in areas where a volcano has not erupted within living memory and/or where baseline geological information about past lahars could be scarce or investigations to delimit past lahars might be incomplete. A lahar source (or proximal lahar-inundation) zone is predicted based on ratio of vertical descent to horizontal run-out of eruptive deposits that spawn lahars. Immediate post-eruption distal lahar-inundation zones are predicted based on “pre-eruption” distal lahar-inundation zones and on spatial factors derived from a digital elevation model. Susceptibility to distal lahar-inundation is estimated by weights-of-evidence, by logistic regression and by evidential belief functions. Predictive techniques are applied using a geographic information system and are tested in western part of Pinatubo volcano (Philippines). Predictive maps are compared with a forecast volcanic-hazard map through validation against a field-based volcanic-hazard map. The predictive model of proximal lahar-inundation zone has “true positive” prediction accuracy, “true negative” prediction accuracy, “false positive” prediction error and “false negative” prediction error that are similar to those of the forecast volcanic-hazard map. The predictive models of distal lahar inundation zones have higher “true positive” prediction accuracy and lower “false negative” prediction error than the forecast volcanic-hazard map, although the latter has higher “true negative” prediction accuracy and lower “false positive” prediction error than the former. The results illustrate utility of proposed predictive techniques in providing geo-information could be used, howbeit with caution, for planning to mitigate potential lahar hazards well ahead of an eruption that could generate substantial source materials for lahar formation. Copyright Springer 2006

Suggested Citation

  • Emmanuel Carranza & Ofelia Castro, 2006. "Predicting Lahar-Inundation Zones: Case Study in West Mount Pinatubo, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 37(3), pages 331-372, March.
  • Handle: RePEc:spr:nathaz:v:37:y:2006:i:3:p:331-372
    DOI: 10.1007/s11069-005-6141-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-005-6141-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-005-6141-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aminreza Neshat & Biswajeet Pradhan, 2015. "Risk assessment of groundwater pollution with a new methodological framework: application of Dempster–Shafer theory and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1565-1585, September.
    2. D. W. Park & S. R. Lee & N. N. Vasu & S. H. Kang & J. Y. Park, 2016. "Coupled model for simulation of landslides and debris flows at local scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1653-1682, April.
    3. Roland Kaitna & Andreas Gobiet & Franz Sinabell & Markus Stoffel, 2014. "DEUCALION – Determining and Visualising Impacts of Greenhouse Climate Rainfall in Alpine Watersheds on Torrential Disasters," WIFO Studies, WIFO, number 59816.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:37:y:2006:i:3:p:331-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.