IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v32y2004i1p111-134.html
   My bibliography  Save this article

A Methodology for Assessing Landslide Hazard Using Deterministic Stability Models

Author

Listed:
  • Vicki Moon
  • Hugh Blackstock

Abstract

Deterministic stability models are used to assess the potential for mass movement within Hamilton City, New Zealand using sensitivity analysis for critical environmental variables. Discrete geomorphic zones are recognised on the basis of material properties and slope characteristics; generic slope profiles are derived for each of these zones by averaging slope profiles determined from a Digital Elevation Model. Stability analysis models are used to derive critical failure surfaces for these profiles using measured or estimated material properties, and sensitivity analysis allows the conditions of water table level and seismic acceleration under which the slopes become unstable to be determined. This method is applied to Hamilton City to assess the citywide hazard associated with mass movement. For the slopes studied, conditions of elevated water table alone may initiate failure, but this is seen as unlikely as the materials are well drained. Combinations of water tables above 10% of the slope elevation together with seismic accelerations of approximately 0.2 g (150 year return period) represent likely failure conditions for many slopes. This information provides emergency management planners with estimates of the likely extent of failure in different regions of the city, and hence facilitates identification of lifelines and infrastructure at risk. The method cannot provide site-specific information, but in combination with knowledge of cultural features gives indications of critical locations where detailed engineering assessments are required. Copyright Kluwer Academic Publishers 2004

Suggested Citation

  • Vicki Moon & Hugh Blackstock, 2004. "A Methodology for Assessing Landslide Hazard Using Deterministic Stability Models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(1), pages 111-134, May.
  • Handle: RePEc:spr:nathaz:v:32:y:2004:i:1:p:111-134
    DOI: 10.1023/B:NHAZ.0000026793.49052.87
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/B:NHAZ.0000026793.49052.87
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/B:NHAZ.0000026793.49052.87?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azm Al-Homoud & Wisam Tahtamoni, 2001. "A Reliability Based Expert System for Assessment and Mitigation of Landslides Hazard Under Seismic Loading," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 24(1), pages 13-51, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Yalcin & Fikri Bulut, 2007. "Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 201-226, April.
    2. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sangki Park & Wooseok Kim & Jonghyun Lee & Yong Baek, 2018. "Case Study on Slope Stability Changes Caused by Earthquakes—Focusing on Gyeongju 5.8 M L EQ," Sustainability, MDPI, vol. 10(10), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:32:y:2004:i:1:p:111-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.