IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v31y2004i2p319-342.html
   My bibliography  Save this article

Seismic Hazard Mapping and Microzonation in the Sikkim Himalaya through GIS Integration of Site Effects and Strong Ground Motion Attributes

Author

Listed:
  • Sankar Kumar Nath

Abstract

The seismic ground motion hazard is mapped in the Sikkim Himalaya with local and regional site conditions incorporated through geographic information system. A strong motion network in Sikkim comprising of 9 digital accelerographs recorded more than 100 events during 1998–2002, of which 41 events are selected with signal-to-noise ratio ≥3 for the estimation of site response (SR), peak ground acceleration (PGA) and predominant frequency (PF) at all stations. With these and inputs from IRS-1C LISS III digital data, topo-sheets, geographical boundary of the State of Sikkim, surface geological maps, soil taxonomy map in 1:50,000 scale and seismic refraction profiles, the seismological and geological thematic maps, namely, SR, PGA, PF, lithology, soil class, %slope, drainage, and landslide layers are generated. The geological themes are united to form the basic site condition coverage of the region. The seismological themes are assigned normalized weights and feature ranks following a pair-wise comparison hierarchical approach and later integrated to evolve the seismic hazard map. When geological and seismological layers are integrated together through GIS, microzonation map is prepared. The overall site response, PGA and predominant frequency show an increasing trend in the NW–SE direction peaking at Singtam in the lesser Himalaya. As Main Boundary Thrust (MBT) is approached, the attribute value increases further. A quasi-probabilistic seismic hazard index has been proposed based on site response, peak ground acceleration and predominant frequency. Six seismic hazard zones are marked with percent probability >22%, 22–37%, 37–52%, 52–67%, 67–82%, >82% at 3 Hz and >20%, 20–34%, 34–48%, 48–61%, 61–75%, >75% at 9 Hz. In the microzonation vector layer of integrated seismological and geological themes also six major zones are mapped, with percent probability >15%, 15–31%, 31–47%, 47–63%, 63–78%, >78% at low frequency end. The maximum risk is attached to the probability greater than 78% in the Singtam and its adjoining area. These maps are generally better spatial representation of seismic hazard including site-specific analysis. Copyright Kluwer Academic Publishers 2004

Suggested Citation

  • Sankar Kumar Nath, 2004. "Seismic Hazard Mapping and Microzonation in the Sikkim Himalaya through GIS Integration of Site Effects and Strong Ground Motion Attributes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(2), pages 319-342, February.
  • Handle: RePEc:spr:nathaz:v:31:y:2004:i:2:p:319-342
    DOI: 10.1023/B:NHAZ.0000023355.18619.0c
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/B:NHAZ.0000023355.18619.0c
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/B:NHAZ.0000023355.18619.0c?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Mohanty & M. Walling & Sankar Nath & Indrajit Pal, 2007. "First Order Seismic Microzonation of Delhi, India Using Geographic Information System (GIS)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(2), pages 245-260, February.
    2. A. Sarris & C. Loupasakis & P. Soupios & V. Trigkas & F. Vallianatos, 2010. "Earthquake vulnerability and seismic risk assessment of urban areas in high seismic regions: application to Chania City, Crete Island, Greece," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 395-412, August.
    3. A. Mahajan & Vikram Gupta & V. Thakur, 2012. "Macroseismic field observations of 18 September 2011 Sikkim earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 589-603, September.
    4. William Mohanty & M. Walling, 2008. "Seismic hazard in mega city Kolkata, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(1), pages 39-54, October.
    5. R. Sivakumar & Snehasish Ghosh, 2017. "Determination of threshold energy for the development of seismic energy anomaly model through integrated geotectonic and geoinformatics approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 711-740, March.
    6. Sankar Kumar Nath & Arnab Sengupta & Anand Srivastava, 2021. "Remote sensing GIS-based landslide susceptibility & risk modeling in Darjeeling–Sikkim Himalaya together with FEM-based slope stability analysis of the terrain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3271-3304, September.
    7. Saurabh Baruah & Anjali Bramha & Sangeeta Sharma & Santanu Baruah, 2019. "Strong ground motion parameters of the 18 September 2011 Sikkim Earthquake Mw = 6.9 and its analysis: a recent seismic hazard scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1001-1023, July.
    8. Naveen James & T. Sitharam & G. Padmanabhan & C. Pillai, 2014. "Seismic microzonation of a nuclear power plant site with detailed geotechnical, geophysical and site effect studies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 419-462, March.
    9. R. Sivakumar & Snehasish Ghosh, 2021. "Assessment of the influence of physical and seismotectonic parameters on landslide occurrence: an integrated geoinformatic approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2765-2811, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:31:y:2004:i:2:p:319-342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.