IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v29y2003i1p13-36.html
   My bibliography  Save this article

A Historical Record of Coastal Floods in Britain: Frequencies and Associated Storm Tracks

Author

Listed:
  • Yongqiang Zong
  • Michael Tooley

Abstract

This paper examines flood frequencies in three coastal sectors of Britain and analyses the associated storm tracks and their principal pathways. The results indicate that the east coast of Britain has suffered most floods over the last 200 years. The frequencies of flood incidents in the south and southwest coast of Britain have increased, particularly during the 20th century, whereas on the west coast flood frequencies have declined. Three distinctive pathways of storm track are identified, related to flood incidents in each coastal sector. A southern pathway in a corridor along the 55° N parallel is associated with flood incidents recorded on the south and southwest coast, whilst storms that are associated with floods on the west coast concentrate along the 60° N parallel. The relationship between the frequencies of floods and climatic variations needs to be explored further. However, the development of coastal settlements has certainly increased vulnerability, and hence the risk of flood disasters. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Yongqiang Zong & Michael Tooley, 2003. "A Historical Record of Coastal Floods in Britain: Frequencies and Associated Storm Tracks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(1), pages 13-36, May.
  • Handle: RePEc:spr:nathaz:v:29:y:2003:i:1:p:13-36
    DOI: 10.1023/A:1022942801531
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1022942801531
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1022942801531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nanda Khoirunisa & Cheng-Yu Ku & Chih-Yu Liu, 2021. "A GIS-Based Artificial Neural Network Model for Flood Susceptibility Assessment," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    2. Thomas Prime & Jennifer M Brown & Andrew J Plater, 2015. "Physical and Economic Impacts of Sea-Level Rise and Low Probability Flooding Events on Coastal Communities," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-28, February.
    3. Qiang Zhang & Wei Zhang & Yongqin Chen & Tao Jiang, 2011. "Flood, drought and typhoon disasters during the last half-century in the Guangdong province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 267-278, May.
    4. Dawson, David & Shaw, Jon & Roland Gehrels, W., 2016. "Sea-level rise impacts on transport infrastructure: The notorious case of the coastal railway line at Dawlish, England," Journal of Transport Geography, Elsevier, vol. 51(C), pages 97-109.
    5. Déborah Idier & Jérémy Rohmer & Rodrigo Pedreros & Sylvestre Roy & Jérome Lambert & Jessie Louisor & Gonéri Cozannet & Erwan Cornec, 2020. "Coastal flood: a composite method for past events characterisation providing insights in past, present and future hazards—joining historical, statistical and modelling approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 465-501, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:29:y:2003:i:1:p:13-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.