IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v26y2002i1p81-107.html
   My bibliography  Save this article

Analysis of Post-Failure Slope Movements within the Framework of Hazard and Risk Analysis

Author

Listed:
  • Jean Vaunat
  • Serge Leroueil

Abstract

The paper first recalls briefly a methodological framework to assess landslide hazard and risk analysis in terms of predisposition, triggering andrevealing factors. This framework, that reflects the mechanisms involved in the landslide, is based on the Geotechnical Characterisation of slope movements proposed by Vaunat et al. (1994) and Leroueil et al. (1996). The Geotechnical Characterisation can be schematized by a 3-D matrix having the following axes: types of movement; types ofmaterial; and the four stages of movement: pre-failure, failure, post-failure andreactivation. For each relevant element of this 3-D matrix, there is a characterisationsheet including: the controlling laws and parameters, the predisposition factors, thetriggering or aggravating factors, the revealing factors and the consequences of the movement. The paper focuses afterwards on the post-failure stage, which generallyis the most destructive, and on the mobility index. It is shown that this laterindex can be described as the product of sub-indices associated with failure, brittlenessof the material, ability of the soil to develop pore pressures, geometry of the moving soil mass and characteristics of the terrain. It is also shown how these aspectscan be incorporated into the Geotechnical characterisation of slope movements. This seems to provide a rational basis for examining slope movements at the post-failure stage and assessing associated risks. Copyright Kluwer Academic Publishers 2002

Suggested Citation

  • Jean Vaunat & Serge Leroueil, 2002. "Analysis of Post-Failure Slope Movements within the Framework of Hazard and Risk Analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 26(1), pages 81-107, May.
  • Handle: RePEc:spr:nathaz:v:26:y:2002:i:1:p:81-107
    DOI: 10.1023/A:1015224914845
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1015224914845
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1015224914845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizabeth Holcombe & Sarah Smith & Edmund Wright & Malcolm Anderson, 2012. "An integrated approach for evaluating the effectiveness of landslide risk reduction in unplanned communities in the Caribbean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 351-385, March.
    2. Fhatuwani Sengani & François Mulenga, 2020. "Application of Limit Equilibrium Analysis and Numerical Modeling in a Case of Slope Instability," Sustainability, MDPI, vol. 12(21), pages 1-33, October.
    3. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    4. Sarah Jacob & Rama Vara Prasad Chavali & Ali Saeidi & Abouzar Sadrekarimi, 2023. "Remoulding energy as a criterion in assessing retrogressive landslides in sensitive clays: a review and its applicability to Eastern Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1833-1853, September.
    5. Michal Bíl & Jan Kubeček & Richard Andrášik, 2014. "An epidemiological approach to determining the risk of road damage due to landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1323-1335, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:26:y:2002:i:1:p:81-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.