IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v23y2001i1p65-86.html
   My bibliography  Save this article

Kinematic Modeling of Pyroclastic Flows Produced by Gravitational Dome Collapse at Soufriere Hills Volcano, Montserrat

Author

Listed:
  • Donald Hooper
  • Glen Mattioli

Abstract

Volcanic activity commenced 18 July 1995 at SoufriereHills volcano and has led to the creation of a newlava dome, which has repeatedly collapsed between 1996and 1999 resulting in highly mobile pyroclastic flows. The majority of associated pyroclastic flow phenomenaare consistent with initiation by gravitationalcollapse as blocks fall from oversteepened flanks ofthe new dome. If gravity controls the energy transferof such collapses, then areas likely to be affectedcan be predicted on the basis of topography. We focuson `dense' flows initiated by non-explosive,gravitational collapse (`Merapi-type' pyroclasticflows) and employ a graphical computer model (Flow3D)written to simulate this type of volcanic flow. Theprogram constructs a digital terrain model based upona 3D network of (x, y, z) triplets, which serves as thebasis for the numerical computations. A synthetic domewas added to the topographic model to improve theaccuracy of the simulations. After estimating thesmall number of key adjustable parameters, simulatedflow pathways, runout distances, and velocitiesclosely approximated observed Merapi-type pyroclasticflows on Montserrat. These simulations demonstrate thevalidity of a simple kinematic method to model densepyroclastic flow phenomena. While the simulationspresented here do not elucidate additional physics ofpyroclastic flow phenomena, this type of modeling canbe completed easily and without extensivea priori knowledge of volcano-specific parameters otherthan topography. Accordingly, it may serve as a rapidand inexpensive first-order approach for initialhazard assessment. Copyright Kluwer Academic Publishers 2001

Suggested Citation

  • Donald Hooper & Glen Mattioli, 2001. "Kinematic Modeling of Pyroclastic Flows Produced by Gravitational Dome Collapse at Soufriere Hills Volcano, Montserrat," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(1), pages 65-86, January.
  • Handle: RePEc:spr:nathaz:v:23:y:2001:i:1:p:65-86
    DOI: 10.1023/A:1008130605558
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1008130605558
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1008130605558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Sheridan & Bernard Hubbard & Gerardo Carrasco-núñez & Claus Siebe, 2004. "Pyroclastic Flow Hazard at Volcán Citlaltépetl," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 209-221, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:23:y:2001:i:1:p:65-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.