IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v16y1997i1p1-28.html
   My bibliography  Save this article

A Block-Based Theoretical Model Suited to Gravitational Sliding

Author

Listed:
  • Stefano Tinti
  • Elisabetta Bortolucci
  • Cesare Vannini

Abstract

An original theoretical model has been devised to simulate mass flow over hill slopes due to gravitational sliding. The sliding mass is discretized into a sequence of contiguous blocks which are subjected to gravitational forces, to bottom friction and to surface resistance stresses that are generally negligible for subaerial flows, but are relevant for submarine slides. The blocks interact with each other while sliding down the hill flanks because of internal forces that dissipate mechanical energy and produce a momentum exchange between the individual blocks, yet conserving the total momentum of the mass. Internal forces are expressed in terms of interaction coefficients depending on the instantaneous distance between the block centers of mass, which is a measure of the deformation experienced by the blocks: the functional dependence includes three parameters, namely the interaction intensity ¯λ, the deformability parameter σ and the shape parameter γ, by means of which a wide range of interaction types can be fully accounted for. The time integration is performed numerically by solving the equations for the block velocities and positions at any time ti by means of the block accelerations at the previous time t i-1 , and by subsequently updating the block accelerations, which allows to proceed iteratively to the following times. The model has been tested against laboratory results available from literature and by means of several numerical experiments involving a simplified geometry both for the sliding body and the basal surface, with the purpose of clarifying the influence of the model parameters on the slide dynamics. The model improves the performance of the existing kinematic models for slides, moreover preserving an equivalent numerical simplicity. Future applications and possible improvements of this model are suggested. Copyright Kluwer Academic Publishers 1997

Suggested Citation

  • Stefano Tinti & Elisabetta Bortolucci & Cesare Vannini, 1997. "A Block-Based Theoretical Model Suited to Gravitational Sliding," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 16(1), pages 1-28, July.
  • Handle: RePEc:spr:nathaz:v:16:y:1997:i:1:p:1-28
    DOI: 10.1023/A:1007934804464
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1007934804464
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1007934804464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sascha Brune & Andrey Babeyko & Christoph Gaedicke & Stefan Ladage, 2010. "Hazard assessment of underwater landslide-generated tsunamis: a case study in the Padang region, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 205-218, May.
    2. Filippo Zaniboni & Alberto Armigliato & Stefano Tinti, 2016. "A numerical investigation of the 1783 landslide-induced catastrophic tsunami in Scilla, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 455-470, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:16:y:1997:i:1:p:1-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.