Author
Listed:
- Jiamei Li
(Taiyuan University of Technology)
- Chaobo Zhang
(Taiyuan University of Technology)
- Qiang Zhang
(Shanxi Yellow River Water Resources Bureau, Yellow River Water Conservancy Commission)
- Jing Jiang
(Taiyuan University of Technology)
Abstract
In order to investigate the impact of plant root systems on the stability of loess shallow slope, this study conducted plant morphology investigations and direct soil shear tests to analyse the morphological characteristics of alfalfa and the shear characteristics of alfalfa root-loess composites under different soil bulk densities and soil moisture saturation levels. Additionally, the reinforcing effect of the alfalfa root system on the reliability of loess slopes was assessed using the Monte Carlo method. Slope reliability analysis refers to the estimation of the probability of slope failure under specific conditions. The results showed that plant weight and root weight both decreased following an exponential function with increasing soil bulk density. Root weight had a positively linear correlation with plant weight. The cohesion and internal friction angle of both loess samples without roots and with roots increased with increasing soil bulk density. The cohesion and internal friction angle of the two kinds of samples could decreased at less and more than 30% soil moisture saturation. The cohesion and internal friction angle of the root–soil composites were significantly higher than those of the rootless soil. The decrease of soil bulk density and the increase of soil moisture could increase the difference of the two mechanical parameters between the two kinds of samples. Assuming the thickness of the landslide body was 0.3 m, the failure probability of loess slopes covered with alfalfa significantly decreased from 34.97 to 14.51% compared to slopes without vegetation cover. Alfalfa roots significantly increased the reliability of the loess slopes in stability.
Suggested Citation
Jiamei Li & Chaobo Zhang & Qiang Zhang & Jing Jiang, 2025.
"Exploring the influence of alfalfa root reinforcement on the loess slopes reliability analysis,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 6339-6356, March.
Handle:
RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-06997-0
DOI: 10.1007/s11069-024-06997-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-06997-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.