IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i5d10.1007_s11069-024-06980-9.html
   My bibliography  Save this article

Investigation into the rockfall impact process of a quarry landfill slope under highway expansion

Author

Listed:
  • Bin Gong

    (Brunel University London)

  • Xiang Yu

    (Brunel University London
    Dalian University of Technology)

  • Yongjun Zhang

    (Qingdao University of Technology)

  • Chunyan Bao

    (Shaoxing University)

  • Chun’an Tang

    (Dalian University of Technology)

Abstract

A quarry landfill slope is commonly partially or entirely filled with quarry waste. On the surface, a substantial amount of rough stone waste accumulates. This study specifically investigated the hazards posed by individual rockfalls and cluster rockfalls induced by landslides in such slopes, using an engineering slope as an illustrative example. The discontinuous deformation and displacement analysis method was employed to analyze the individual and cluster rockfall motion characteristics, as well as the dynamic response of protection structures. The results indicate that: (1) The impact of individual falling rocks on structures results in deformation and damage that far surpasses that caused by a flat plane impact. Interestingly, the stress generated upon rockfall contact with the structure is not initially at its maximum; it gradually increases to a peak as deformation occurs. When the structure is damaged or rebounds, the impact stress significantly diminishes. For wedge-shaped falling rocks impacting the upper part of the structure, bending tilting failure tends to occur. Conversely, irregular blocks with larger volumes impacting the lower part of the structure often lead to direct toppling failure; (2) Clusters falling rocks impede the movement of the sliding body. As the front and rear sliding bodies fracture along the middle, the rear sliding body tilts. Consequently, accumulated blocks are struck by the sliding body, initiating oblique throwing movements. There is a high likelihood of these rocks crossing protective structures; (3) The protection rate of the protective structure against single block stone impact stands at 86.7%. However, when subjected to the impact of a group of rockfalls, the protective structure completely fails. Overall, although the current protective measures are relatively cost-effective, the extremely high probability of casualties makes them unacceptable.

Suggested Citation

  • Bin Gong & Xiang Yu & Yongjun Zhang & Chunyan Bao & Chun’an Tang, 2025. "Investigation into the rockfall impact process of a quarry landfill slope under highway expansion," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 5669-5695, March.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-06980-9
    DOI: 10.1007/s11069-024-06980-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06980-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06980-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-06980-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.