Author
Listed:
- Chuanfa Chen
(Shandong University of Science and Technology)
- Yating Liu
(Shandong University of Science and Technology)
- Yanyan Li
(Shandong University of Science and Technology)
- Fangjia Guo
(Shandong University of Science and Technology)
Abstract
Spatial heterogeneity and information redundancy of landslide influencing factors (LIFs) greatly impair the generalizability of landslide susceptibility mapping (LSM) models. To this end, this paper proposes a new LSM method that takes into account spatial heterogeneity and factor optimization. Firstly, a method based on frequency ratio, coupled with buffer-controlled sampling, is developed to extract non-landslides from the non-landslide area. Then, the study site is divided into several homogeneous areas using agglomerative clustering based on LIFs and spatial locations. Next, the LIFs are optimized in each region based on a combination of variance inflation factor, the Boruta algorithm, and geographical detector so as to avoid information redundancy and noise from both statistical and spatial perspectives. Finally, the random forest (RF) model with the optimized LIFs is used for LSM at the regional scale. Taking 686 landslides and 15 LIFs in Yibin city, China as an example, the proposed method was compared with four state-of-the-art models for LSM including regional RF, global RF with factor optimization, global RF using clustering attribute as one of its inputs, global RF without factor optimization, and global RF using a combination of factor optimization and clustering attribute. Results indicate that compared to the four classical models, the proposed method increases the Accuracy, Recall, Precision, F1 score, and the area under the receiver operating characteristic (AUC) curve by 1.6–5.2%, 2.9–12.5%, 0.1–3.5%, 2.9–7.0%, and 1.8–4.7%, respectively. Additionally, the proposed method can produce more accurate and reasonable landslide susceptibility maps, with an increase in the disaster activity intensity index by 2.7–20.8%. Overall, the proposed method presents a viable alternative for the spatial forecast of landslide susceptibility.
Suggested Citation
Chuanfa Chen & Yating Liu & Yanyan Li & Fangjia Guo, 2025.
"Mapping landslide susceptibility with the consideration of spatial heterogeneity and factor optimization,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4067-4093, March.
Handle:
RePEc:spr:nathaz:v:121:y:2025:i:4:d:10.1007_s11069-024-06955-w
DOI: 10.1007/s11069-024-06955-w
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:4:d:10.1007_s11069-024-06955-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.