Author
Listed:
- Aydoğan Avcıoğlu
(Eurasia Institute of Earth Sciences, Istanbul Technical University
BRGM)
- Abdullah Akbaş
(Bursa Uludağ University)
- Tolga Görüm
(Eurasia Institute of Earth Sciences, Istanbul Technical University)
- Ömer Yetemen
(Eurasia Institute of Earth Sciences, Istanbul Technical University)
Abstract
The large wildfire sequence took place in July and August 2023 in Çanakkale, recorded as the largest wildfire incident in NW, Türkiye. The total affected area in two successive wildfires is 79.1 km2. This study presents an observation-based instance and statistical model findings of how topography as a major determinant controls wildfire propagation direction and burn severity with the contribution of weather conditions (particularly wind and temperature) and specific land use and land cover (LULC) types. The findings reveal that the Çanakkale Strait and Biga Mountains as regional geomorphic units that extend from northeast to southwest portray the main direction of wildfire incidents guided by prevailing wind patterns and specific LULC types. The marginal section of the Biga Mountains, where the topographic relief and slope largely increase, constrain wildfire propagation, while vegetation density is higher in the steeper areas. Notably, the specific LULC which is a harvested wheat field plays an important role in determining the major direction of wildfire, primarily influenced by the prevailing northeast-to-southwest wind direction observed in the July case. Furthermore, the ordinary least square model results showed that rougher topography tends to exhibit higher burn severity which is the case for the August wildfire. The local topographic conditions (i.e., valley shape morphology) offer an appropriate observational insight for general mathematical models with the increased burn severity, and the main direction of fire and impeding areas in the August case. This study also sheds light on the significance of wind direction that can surpass the slope orientation for burn severity which is expected higher potential in equator-faced compared to the polar-faced.
Suggested Citation
Aydoğan Avcıoğlu & Abdullah Akbaş & Tolga Görüm & Ömer Yetemen, 2025.
"The compound effect of topography, weather, and fuel type on the spread and severity of the largest wildfire in NW of Turkey,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(3), pages 3219-3237, February.
Handle:
RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06885-7
DOI: 10.1007/s11069-024-06885-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:3:d:10.1007_s11069-024-06885-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.