IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i2d10.1007_s11069-024-06878-6.html
   My bibliography  Save this article

Comparisons of filter, wrapper, and embedded feature selection for rockfall susceptibility prediction and mapping

Author

Listed:
  • Chengming Lei

    (China University of Geosciences)

  • Chunyan Liu

    (The Third Geological Brigade of Guangdong Geological Bureau)

  • Yunbin Zhang

    (The Third Geological Brigade of Guangdong Geological Bureau)

  • Jianmei Cheng

    (China University of Geosciences)

  • Ruirui Zhao

    (China University of Geosciences)

Abstract

The selection of influencing factors is very important for the rockfall susceptibility prediction (RSP). To improve the reliability of rockfall susceptibility prediction, three feature selection methods were used and compared to select reasonable influencing factors. The three feature selection methods are filter, wrapper, and embedded, respectively. Filter methods are represented by ReliefF and chi-square, wrapper methods are represented by genetic algorithm (GA) and binary particle swarm optimization (BPSO), and embedded methods are represented by L1-norm minimization learning (LML) and recursive features elimination (RFE). Taking Meizhou City, Guangdong Province, China as the research area, 21 factors are preliminarily selected to establish a rockfall susceptibility evaluation system. The above six feature selection methods are applied to optimize the combination of factors, and the contribution of each factor in different methods is analyzed. Then, based on the optimized factor combination, the random forest (RF) model is used to predict the rockfall susceptibility. Finally, the performance of the models is evaluated. The results show that the main influencing factors of the rockfall in Meizhou City are annual average rainfall (the importance is 0.130), distance to the road (0.109), and spring kernel density (0.094). The BPSO-RF model has the best performance for all the metrics with the area under the receiver operating characteristic curve (AUC), Accuracy (ACC), Recall (REC) and F1 Score (FS) of 0.891, 0.818, 0.805 and 0.822 respectively. Compared with the initial RF model, the AUC, ACC, REC and FS of the BPSO-RF model are improved by 2.7%, 4.5%, 4.5% and 4.4%, respectively. The model performance of wrapper methods represented by GA and BPSO is significantly better than that of filter and embedded methods. It can be inferred that the wrapper method is based on feature subset search and considers the mutual information between features, which makes the method better in removing redundant features and optimizing RSP.

Suggested Citation

  • Chengming Lei & Chunyan Liu & Yunbin Zhang & Jianmei Cheng & Ruirui Zhao, 2025. "Comparisons of filter, wrapper, and embedded feature selection for rockfall susceptibility prediction and mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1911-1943, January.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06878-6
    DOI: 10.1007/s11069-024-06878-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06878-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06878-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06878-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.