IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i8d10.1007_s11069-024-06518-z.html
   My bibliography  Save this article

Characteristics and mechanism of a catastrophic landslide-debris flow disaster chain triggered by extreme rainfall in Shaanxi, China

Author

Listed:
  • Zhaoyue Yu

    (Chang’an University)

  • Jiewei Zhan

    (Chang’an University
    Chang’an University)

  • Zhaowei Yao

    (Chang’an University)

  • Jianbing Peng

    (Chang’an University)

Abstract

On October 5, 2021, a landslide-debris flow disaster chain occurred suddenly in Hanping village, Shaanxi Province, China. This catastrophic disaster chain damaged 7 houses, 41.9 hectares of arable land and 3 roads and resulted in 1 death. Based on a detailed field investigation of the disaster site, we analyzed the dynamic evolution of the disaster chain by using experimental analysis, unmanned aerial vehicle photogrammetry, satellite remote sensing interpretation and the SBAS-InSAR technique and then preliminarily revealed the movement process and causal mechanism of the disaster chain. The results suggested that the first landslide initiated in the upper part of Canger cliff, which is the result of the combined effects of slope structure, earthquake damage, engineering disturbance, and rainfall infiltration. Among them, extreme rainfall events are the primary factors that induce landslides. Before the landslide, InSAR results showed that deformations had already appeared in the source area, and the deformation rate had a strong correlation with precipitation. Then, the potential-to-kinetic transformation effect and air cushion effects generated by the landslide movement in the narrow and steep section of Canger cliff led to the disintegration of the sliding body. With replenished surface runoff, the clastic flow gradually transformed into debris flow. Moreover, due to the dam-breaching effects at bayonets and bends and the entrainment effect of the high-density debris flow along the gully, the scale of debris flow increases gradually, resulting in catastrophic damage during the movement. The findings of this study provide a significant reference and guidance for understanding the chain-generation mechanism of landslide-debris flow disaster chains, as well as informing disaster prevention and mitigation strategies.

Suggested Citation

  • Zhaoyue Yu & Jiewei Zhan & Zhaowei Yao & Jianbing Peng, 2024. "Characteristics and mechanism of a catastrophic landslide-debris flow disaster chain triggered by extreme rainfall in Shaanxi, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7597-7626, June.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06518-z
    DOI: 10.1007/s11069-024-06518-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06518-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06518-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06518-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.