Author
Abstract
Recurrence statistics of large earthquakes has a long-term economic and societal importance. This study investigates the temporal distribution of large (M ≥ 6) earthquakes in the Nepal Himalaya. We compile earthquake data of more than 200 years (1800–2022) and calculate interevent times of successive main shocks. We then derive recurrence-time statistics of large earthquakes using a set of twelve reference statistical distributions. These distributions include the time-independent exponential and time-dependent gamma, lognormal, Weibull, Levy, Maxwell, Pareto, Rayleigh, inverse Gaussian, inverse Weibull, exponentiated exponential and exponentiated Rayleigh. Based on a sample of 38 interoccurrence times, we estimate model parameters via the maximum likelihood estimation and provide their respective confidence bounds through Fisher information and Cramer–Rao bound. Using three model selection approaches, namely the Akaike information criterion (AIC), Kolmogorov–Smirnov goodness-of-fit test and the Chi-square test, we rank the performance of the applied distributions. Our analysis reveals that (i) the best fit comes from the exponentiated Rayleigh (rank 1), exponentiated exponential (rank 2), Weibull (rank 3), exponential (rank 4) and the gamma distribution (rank 5), (ii) an intermediate fit comes from the lognormal (rank 6) and the inverse Weibull distribution (rank 7), whereas (iii) the distributions, namely Maxwell (rank 8), Rayleigh (rank 9), Pareto (rank 10), Levy (rank 11) and inverse Gaussian (rank 12), show poor fit to the observed interevent times. Using the best performed exponentiated Rayleigh model, we observe that the estimated cumulative and conditional occurrence of a M ≥ 6 event in the Nepal Himalaya reach 0.90–0.95 by 2028–2031 and 2034–2037, respectively. We finally present a number of conditional probability curves (hazard function curves) to examine future earthquake hazard in the study region. Overall, the findings provide an important basis for a variety of practical applications, including infrastructure planning, disaster insurance and probabilistic seismic hazard analysis in the Nepal Himalaya.
Suggested Citation
Sumanta Pasari & Himanshu Verma, 2024.
"Recurrence statistics of M ≥ 6 earthquakes in the Nepal Himalaya: formulation and relevance to future earthquake hazards,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7725-7748, June.
Handle:
RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06489-1
DOI: 10.1007/s11069-024-06489-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:8:d:10.1007_s11069-024-06489-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.