Author
Listed:
- Alec S. Dyer
(National Energy Technology Laboratory
NETL Support Contractor)
- MacKenzie Mark-Moser
(National Energy Technology Laboratory)
- Rodrigo Duran
(National Energy Technology Laboratory
Theiss Research)
- Jennifer R. Bauer
(National Energy Technology Laboratory)
Abstract
Among natural hazards occurring offshore, submarine landslides pose a significant risk to offshore infrastructure installations attached to the seafloor. With the offshore being important for current and future energy production, there is a need to anticipate where future landslide events are likely to occur to support planning and development projects. Using the northern Gulf of Mexico (GoM) as a case study, this paper performs Landslide Susceptibility Mapping (LSM) using a gradient-boosted decision tree (GBDT) model to characterize the spatial patterns of submarine landslide probability over the United States Exclusive Economic Zone (EEZ) where water depths are greater than 120 m. With known spatial extents of historic submarine landslides and a Geographic Information System (GIS) database of known topographical, geomorphological, geological, and geochemical factors, the resulting model was capable of accurately forecasting potential locations of sediment instability. Results of a permutation modelling approach indicated that LSM accuracy is sensitive to the number of unique training locations with model accuracy becoming more stable as the number of training regions was increased. The influence that each input feature had on predicting landslide susceptibility was evaluated using the SHapely Additive exPlanations (SHAP) feature attribution method. Areas of high and very high susceptibility were associated with steep terrain including salt basins and escarpments. This case study serves as an initial assessment of the machine learning (ML) capabilities for producing accurate submarine landslide susceptibility maps given the current state of available natural hazard-related datasets and conveys both successes and limitations.
Suggested Citation
Alec S. Dyer & MacKenzie Mark-Moser & Rodrigo Duran & Jennifer R. Bauer, 2024.
"Offshore application of landslide susceptibility mapping using gradient-boosted decision trees: a Gulf of Mexico case study,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6223-6244, May.
Handle:
RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06492-6
DOI: 10.1007/s11069-024-06492-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:7:d:10.1007_s11069-024-06492-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.