IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i6d10.1007_s11069-024-06427-1.html
   My bibliography  Save this article

Effects of runoff generation methods and simulation time steps on flood simulation: a case study in Liulin experimental watershed

Author

Listed:
  • Jianzhu Li

    (Tianjin University)

  • Yunfei Peng

    (Tianjin University)

  • Ting Zhang

    (Tianjin University)

  • Yanfu Kang

    (Hydrological Survey and Research Center of Xingtai City)

  • Bo Zhang

    (Hydrological Survey and Research Center of Xingtai City)

Abstract

Flood simulation in sub-humid regions is one of the difficult issues in hydrology. Liulin experimental watershed, a typical sub-humid region in northern China, was selected for flood simulation. 20 rainfall–runoff events from 1995 to 2021 were selected to calibrate and validate the sub-distributed HEC-HMS model. The applicability of the model to flood simulation in the Liulin experimental watershed was explored. The influences of different runoff generation methods (SCS-CN method and initial constant method) and simulation time steps (1 h and 30 min) on flood simulation were compared. The applicability of the model to different antecedent moisture conditions and different flood characteristics was also analyzed. The results showed that all the schemes of rainfall–runoff models with different runoff generation methods and time steps have satisfactory performance in simulating floods. When the time step is 1 h, the initial constant runoff generation method was more suitable for runoff simulation, however, when the time step is 30 min, the SCS-CN runoff generation method was more robust. As the simulation time step decreased, the model performance was improved, but the improvement amplitude was greater when the SCS-CN method was used. In addition, the model performed better when antecedent moisture was higher, and the flood was single-peak. When the measured peak discharge was lower than 100 m3/s, the model could simulate the peak discharge and peak time better, and conversely, the model could simulate the flood volume and flood hydrograph better. This study is valuable for flood forecasting in sub-humid areas.

Suggested Citation

  • Jianzhu Li & Yunfei Peng & Ting Zhang & Yanfu Kang & Bo Zhang, 2024. "Effects of runoff generation methods and simulation time steps on flood simulation: a case study in Liulin experimental watershed," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(6), pages 5639-5666, April.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:6:d:10.1007_s11069-024-06427-1
    DOI: 10.1007/s11069-024-06427-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06427-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06427-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:6:d:10.1007_s11069-024-06427-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.