IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i12d10.1007_s11069-024-06669-z.html
   My bibliography  Save this article

Development of a convolutional neural network based regional flood frequency analysis model for South-east Australia

Author

Listed:
  • Nilufa Afrin

    (Western Sydney University)

  • Farhad Ahamed

    (Western Sydney University)

  • Ataur Rahman

    (Western Sydney University)

Abstract

Flood is one of the worst natural disasters, which causes significant damage to economy and society. Flood risk assessment helps to reduce flood damage by managing flood risk in flood affected areas. For ungauged catchments, regional flood frequency analysis (RFFA) is generally used for design flood estimation. This study develops a Convolutional Neural Network (CNN) based RFFA technique using data from 201 catchments in south-east Australia. The CNN based RFFA technique is compared with multiple linear regression (MLR), support vector machine (SVM), and decision tree (DT) based RFFA models. Based on a split-sample validation using several statistical indices such as relative error, bias and root mean squared error, it is found that the CNN model performs best for annual exceedance probabilities (AEPs) in the range of 1 in 5 to 1 in 100, with median relative error values in the range of 29–44%. The DT model shows the best performance for 1 in 2 AEP, with a median relative error of 24%. The CNN model outperforms the currently recommended RFFA technique in Australian Rainfall and Runoff (ARR) guideline. The findings of this study will assist to upgrade RFFA techniques in ARR guideline in near future.

Suggested Citation

  • Nilufa Afrin & Farhad Ahamed & Ataur Rahman, 2024. "Development of a convolutional neural network based regional flood frequency analysis model for South-east Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 11349-11376, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06669-z
    DOI: 10.1007/s11069-024-06669-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06669-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06669-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pezhman Allahbakhshian-Farsani & Mehdi Vafakhah & Hadi Khosravi-Farsani & Elke Hertig, 2020. "Regional Flood Frequency Analysis Through Some Machine Learning Models in Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2887-2909, July.
    2. Mehdi Vafakhah & Saeid Khosrobeigi Bozchaloei, 2020. "Regional Analysis of Flow Duration Curves through Support Vector Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 283-294, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabzekar, Mostafa & Hasheminejad, Seyed Mohammad Hossein, 2021. "Robust regression using support vector regressions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Shuhui Guo & Lihua Xiong & Jie Chen & Shenglian Guo & Jun Xia & Ling Zeng & Chong-Yu Xu, 2023. "Nonstationary Regional Flood Frequency Analysis Based on the Bayesian Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 659-681, January.
    3. Arash Adib & Arash Zaerpour & Ozgur Kisi & Morteza Lotfirad, 2021. "A Rigorous Wavelet-Packet Transform to Retrieve Snow Depth from SSMIS Data and Evaluation of its Reliability by Uncertainty Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2723-2740, July.
    4. Xiaoming Guo & Lukai Xu & Lei Su & Yu Deng & Chaohui Yang, 2021. "Comparing Flow Duration Curves and Discharge Hydrographs to Assess Eco-flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4681-4693, November.
    5. Rabin Chakrabortty & Subodh Chandra Pal & Saeid Janizadeh & M. Santosh & Paramita Roy & Indrajit Chowdhuri & Asish Saha, 2021. "Impact of Climate Change on Future Flood Susceptibility: an Evaluation Based on Deep Learning Algorithms and GCM Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4251-4274, September.
    6. Muhammad Uzair Qamar & Cuauhtémoc Tonatiuh Vidrio-Sahagún & Jianxun He & Usama Tariq & Akbar Ali, 2024. "Prediction of Monthly Flow Regimes Using the Distance-Based Method Nested with Model Swapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(14), pages 5597-5613, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06669-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.